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This article provides an overview on the statistical modeling of complex
data as increasingly encountered in modern data analysis. It is argued that
such data can often be described as elements of a metric space that satisfies
certain structural conditions and features a probability measure. We refer to
the random elements of such spaces as random objects and to the emerging
field that deals with their statistical analysis as metric statistics. Metric statis-
tics provides methodology, theory and visualization tools for the statistical
description, quantification of variation, centrality and quantiles, regression
and inference for populations of random objects, inferring these quantities
from available data and samples. In addition to a brief review of current
concepts, we focus on distance profiles as a major tool for object data in
conjunction with the pairwise Wasserstein transports of the underlying one-
dimensional distance distributions. These pairwise transports lead to the def-
inition of intuitive and interpretable notions of transport ranks and transport
quantiles as well as two-sample inference. An associated profile metric com-
plements the original metric of the object space and may reveal important
features of the object data in data analysis. We demonstrate these tools for
the analysis of complex data through various examples and visualizations.

1. Introduction. We delineate in this article an emerging field of statistics that provides
models, methods and theory for complex data situated in metric spaces (�,d) with a metric
d . We refer to this field as metric statistics. Throughout it is assumed that the metric spaces
where the data are situated are separable and endowed with a probability measure P . We
refer to random variables taking values in such metric spaces as random objects, adopting the
name from a previous review and perspective (Müller (2016)).

The motivation to address the challenges posed by non-Euclidean data and to study com-
mon features of such data and techniques that are applicable across many metric spaces comes
from data analysis, where increasingly complex data objects are encountered. Statistical anal-
ysis means that the emphasis is on statistical methods that evolved from and have counterparts
in classical Euclidean statistics, are interpretable rather than black-box approaches, and are
amenable to uncertainty quantification and inference. The need for such methodology has not
gone unnoticed and over the last two decades various groups of statisticians have come up
with interesting and important ideas about the handling of such data. This includes object-
oriented data analysis with roots in statistics for manifold-valued data, shape analysis and
geometric statistics and related ideas for visualization and modeling (Dryden, Koloydenko
and Zhou (2009), Huckemann and Eltzner (2021), Marron and Dryden (2021), Wang and
Marron (2007)), and also symbolic data analysis, where various subproblems have been em-
phasized such as data that consist of intervals (Billard and Diday (2003)).
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A distinctive feature of metric statistics that differentiates it from classical as well as geo-
metric statistics is the nonreliance on local or global Euclidean or manifold structure. While
for some spaces local linearizations may exist, as exemplified by one-dimensional distribu-
tional data with the 2-Wasserstein metric, where one can use the pseudo Riemannian struc-
ture to define L2 tangent spaces (Bigot et al. (2017), Chen, Lin and Müller (2023)), these
are often only of limited utility; for example, inverse maps from the linear spaces back to
the metric space usually are not well defined on the entire linear approximation space. The
same holds for linear embeddings into a subset of a Hilbert space obtained through kernel
maps (Schoenberg (1938), Sejdinovic et al. (2013)), although there exist specific invertible
maps to a Hilbert space for special nonlinear spaces, which however induce metric distortions
(Petersen and Müller (2016a)). The lack of Euclidean structure in general metric spaces poses
challenging problems for statistical theory, methodology and data analysis of random objects
and essentially requires to rethink basic notions of mean, variation, regression, inference and
other key statistical techniques. The overall goal is to arrive at a principled, theory-supported
and comprehensive toolkit for the analysis of samples of random objects.

After a brief review, we focus here on distance profiles, a basic tool that assigns a one-
dimensional distribution to each element of the underlying metric space (�,d). Distance
profiles are the distributions of the distances of each element to a random object in the space �

and are determined by the underlying probability measure P on �. As we will show, distance
profiles not only reflect but indeed characterize P under some regularity assumptions. In all
of the following, we will assume that one has a sample of i.i.d. random objects drawn from
P . Empirical estimates for the distance profiles are then simply obtained using the empirical
distribution of the distances of any given element of � to all other elements, either to all
elements in the population or in the empirical version to the other sample elements. We
will illustrate this idea also for the simple and familiar special case of Euclidean data; in all
scenarios, distance profiles always correspond to one-dimensional distributions.

Distance profiles have multiple applications that we explore in this article. First of all, they
aid the geometric exploration of random objects in (�,d) under the measure P . Second, since
distance profiles are always one-dimensional distributions, we can define a new dissimilarity
measure on � by adopting a metric on the space of one-dimensional distributions, which is
then applied to the distributional distance of the distance profiles of the two elements. This
dissimilarity measure depends on both the original metric in the space (�,d) as well on
the metric adopted for one-dimensional distributions, where here we adopt the 2-Wasserstein
metric as the metric in the distributional space of distance profiles.

Third, the pairwise transports that result from adopting the 2-Wasserstein metric for the
space of distance profiles make it possible to define novel notions of transport centrality and
associated transport ranks. These serve to quantify the centrality of objects and provide the
basis for a partial ordering of random objects and resulting visualizations. Fourth, transport
centrality and transport ranks can be harnessed to define transport quantiles as the set of
elements of � with transport ranks such that the elements with higher ranks have a probability
mass no less than the prespecified quantile level.

Fifth, we demonstrate how distance profiles across two samples can be used to test whether
the probability measures that generate the samples are identical. This relies on the fact that
distance profiles characterize the underlying probability measures; we note that related ideas
on inference based on distance profiles as those presented in Section 6 below, resulting from
seemingly independent work, were recently published (Wang et al. (2023)).

Distance profiles thus emerge as a powerful tool to characterize random objects. As we
show in the following Section 2, they are natural extensions of some basic ideas of how to
quantify the variation of random objects. Section 2 contains a brief review of some of the
basic concepts of metric statistics, including Fréchet and transport regression. Distance pro-
files and how they give rise to transport ranks and quantiles, as well as notions such as most
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central points and the properties of these concepts, will be the theme of Section 3 and Sec-
tion 4. Further connections to applications for inference, specifically distance profile based
inference, will be discussed in Section 6, followed by simulation studies and applications
to age-at-death distributions of human mortality, U.S. energy generation data and functional
connectivity networks based on fMRI data in Section 7. We conclude with a discussion on
the choice of metrics and other topics in Section 8. Auxiliary results and proofs as well as ad-
ditional simulations and data examples are provided in the Supplementary Material (Dubey,
Chen and Müller (2024)).

2. Review of basic notions for samples of random objects. Random objects encom-
pass the usual random variables that take values in spaces R

p as encountered in classical
statistics and also random functions in Hilbert spaces L2, which is the realm of functional
data analysis and where one still has linear structures, inner products and linear operators
(Hsing and Eubank (2015), Wang, Chiou and Müller (2016)). Other well-studied classes of
random objects are data on Riemannian manifolds, notably spheres, which also appear in
shape analysis (Dryden and Mardia (2016), Jung, Dryden and Marron (2012)) and where
surprising smeariness results were obtained in recent developments on the limit theory for
Fréchet means (Eltzner and Huckemann (2019)).

A recently emerging subarea of metric statistics is distributional data analysis, where the
atoms of a sample are distributions. These may be directly observed or more commonly in-
directly through the data that each distribution generates. In earlier approaches, samples of
distributions were treated as functional data (Kneip and Utikal (2001)), but while density
or distribution functions can be considered as elements of the function space L2, this ap-
proach is suboptimal since distributional objects lie on a constrained submanifold; for exam-
ple, densities are nonnegative and integrate to 1. Taking these constraints fully into account
for statistical analysis motivates distributional data analysis (Ghosal et al. (2023), Matabuena
et al. (2021), Petersen, Zhang and Kokoszka (2022)). Linearization approaches for distribu-
tional data include the Bayes space transformation (Hron et al. (2016)), which is based on
the Aitchison geometry (Aitchison (1986)), however, does not yield a 1:1 map, and a class
of 1:1 transformations to linear spaces that includes the log quantile density (lqd) and log
hazard transformations (Petersen and Müller (2016a)). More recent approaches have used lo-
cal linearizations through the geometry of the Wasserstein manifold (Chen, Lin and Müller
(2023), Pegoraro and Beraha (2022)) and fully intrinsic optimal transport models that do not
rely on any ambient L2 space (Ghodrati and Panaretos (2023), Zhu and Müller (2023a)). In
distributional data analysis, the metric space � is the space of distributions, which are often
assumed to have a finite domain and to be continuous, and d is an appropriate metric. For
statistical analysis in the case of one-dimensional distributions the 2-Wasserstein metric has
become popular, not least due to its practical appeal in data analysis (Bolstad et al. (2003)).
For probability measures μ, ν with distribution functions Fμ, Fν , the 2-Wasserstein distance
is given simply as the L2 distance of the quantile functions,

(1) dW(μ, ν) =
(∫ 1

0

[
F−1

μ (u) − F−1
ν (u)

]2 du

)1/2
= dL2

(
F−1

μ ,F−1
ν

)
.

For the case of multivariate distributions, quantile functions do not exist and the 2-
Wasserstein metric is more directly tied to optimal transport in the Monge–Kantorovich trans-
portation problem, where the Kantorovich version (Kantorovitch (1958)) is

(2) d2
W(μ,ν) = inf

℘∈P(μ,ν)
E(X,Y )∼℘‖X − Y‖2.

Here, X, Y are random variables in R
d , μ, ν are probability measures supported on a set

D ⊂ R
d , and P(μ, ν) is the space of joint probability measures on D × D with marginals μ
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and ν. If the probability distributions are absolutely continuous, this is equivalent to finding
the optimal transport in Monge’s version

(3) T ∗(μ, ν) = arginf
T :T#μ=ν

EX∼μ

∥∥X − T (X)
∥∥2

.

Here, the infimum is taken over all push-forward Borel maps D → D that map μ to ν. The
push-forward map T applied to a probability measure ν1 on D yields ν2 = T#ν1, defined
as the measure with ν2(A) = ν1(T

−1(A)) for any measurable set A ⊂ D. If it exists, this
minimizer is the optimal transport map and the minimizing value is the Wasserstein metric
dW , which coincides with the definition in (1) for the special case of univariate distributions.

In the multivariate case, this minimization problem is computationally challenging and
often replaced by a relaxed version, for example the Sinkhorn minimization (Cuturi (2013)),
but then depends critically on regularization parameters. The statistical motivation to use
the Wasserstein metric for multivariate distributional data is also less compelling than for the
one-dimensional case. Therefore, it makes sense to use a simpler metric for this case. Options
include the sliced Wasserstein metric (Kolouri et al. (2019)) or the Fisher–Rao metric, which
does not have quite the appeal of the Wasserstein metric with its connection to optimal mass
transport, but is easy to compute in any dimension when densities exist, as it is the geodesic
distance for the square roots of densities. These square roots are situated on the Hilbert sphere,
whence for measures ν1, ν2 with densities fν1 , fν2 the metric is

dFR(ν1, ν2) = arccos
{∫ √

fν1(x)fν2(x)dx

}
.

When adopting the Fisher–Rao metric, multivariate distributional data and spherical data as
are commonly encountered in directional data analysis can be viewed in a unified framework
of spherical data, for example, in time-series analysis (Zhu and Müller (2024)). The spherical
framework also encompasses compositional data when using the square root transformation
for proportions (Scealy and Welsh (2014)).

Other important classes of random objects include covariance matrices and surfaces (Pigoli
et al. (2014), Zemel and Panaretos (2019)), networks (Severn, Dryden and Preston (2022),
Zhou and Müller (2022)) and trees (Barden, Le and Owen (2018), Garba et al. (2021), Lueg
et al. (2022)), where for the BHV metric (Billera, Holmes and Vogtmann (2001)) the requisite
entropy conditions for the asymptotic analysis of M-estimators were recently established (Lin
and Müller (2021)). Analogous to functional analysis and linear operator theory being the
basis of functional data analysis, so is metric geometry (Burago, Burago and Ivanov (2001))
the basis for metric statistics; an abbreviated introduction for statisticians can be found in
Section 2 and Appendix B in Lin and Müller (2021).

We aim to find commonalities across metric spaces, unifying theory and methodology, re-
gardless of the specific geometry of the metric space. Entropy conditions that quantify the size
of the space have emerged as a key tool. The utility of entropy conditions and empirical pro-
cess theory for random objects was recognized in recent work on Fréchet means/barycenters
and Fréchet regression (Ahidar-Coutrix, Le Gouic and Paris (2020), Petersen and Müller
(2019), Schötz (2019), Schötz (2022)). A basic and classical notion is the measure of location
provided by the Fréchet mean (Fréchet (1948)) or barycenter, which is defined as minimizer
of the Fréchet function � →R,

(4) V (ω) = Ed2(ω,X).

The population/sample minimizers

(5) μ⊕ = argmin
ω∈�

Ed2(ω,X), μ̂⊕ = argmin
ω∈�

n∑
i=1

d2(ω,Xi)

generally form a set.
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Uniqueness of Fréchet means is guaranteed in Hadamard spaces (Sturm (2003)), and
for positively curved spaces depends on both the geometry of the space � and the prob-
ability measure P . Analogously to Fréchet means one can also consider Fréchet integrals
for �-valued functions X(t) (Petersen and Müller (2016b)). A functional scenario with �-
valued stochastic processes widens the scope of functional data analysis (Dubey and Müller
(2020a)), where the previous standard has been that the underlying processes are Euclidean,
either scalar-, vector- or L2-valued (Chen, Delicado and Müller (2017)). The special case of
distribution-valued stochastic processes is of particular interest and permits a more in-depth
investigation (Zhou and Müller (2023)). For general types of �-valued functions, the Fréchet
integral provides a direct extension of the Riemann integral for R-valued functions and in
analogy to the Fréchet mean is defined as∫

⊕
X(t) dt = argmin

ω∈�

∫
d2(

ω,X(t)
)
dt.

This integral has proved useful in various investigations of object-valued processes (Dubey
and Müller (2020a), Lin and Müller (2021), Petersen and Müller (2016b)).

Another important extension of Fréchet means is the notion of a conditional Fréchet mean
E⊕(X|Z), where X ∈ � and Z ∈ R

p , or more generally Z ∈ �′ for another metric space
(�′, d ′). The statistical motivation is to model complex regression relationships that involve
random objects. A narrower specification is needed to make this notion useful for statistical
modeling and data analysis, targeting

m⊕(z) = argmin
ω∈�

E
(
d2(X,ω)|Z = z

)
.

Nadaraya–Watson kernel estimators for the case of manifold-to-manifold regression �′ → �

that have been previously considered (Steinke and Hein (2009), Steinke, Hein and Schölkopf
(2010)) are subject to a severe version of the curse of dimensionality, unless the predictor
manifold is low-dimensional, and they are also subject to substantial boundary effects. Spe-
cial cases include the smoothing of covariance matrices or data on a Riemannian manifolds
indexed by time using local linear estimators (Cheng and Wu (2013), Cornea et al. (2017),
Yuan et al. (2012)), including versions for functional and longitudinal data analysis, where
functional principal components are a primary target after the smoothing step (Dai, Lin and
Müller (2021)).

In addition to local linear and other desirable smoothers for the case of low-dimensional
predictors, it is also of interest to include global models that extend the classical linear mul-
tiple regression model when responses are random objects and predictors are Euclidean vec-
tors. A general approach is Fréchet regression (Petersen and Müller (2019)) for the sub-
problem where �′ = R

p . Observing that smoothing or global linear regression methods are
weighted averages with known or computable weights, one can take the weights that cor-
respond to the respective regression method and form a weighted Fréchet mean. The key
problem is that when estimating at certain predictor levels some weights will be negative.
Making use of entropy conditions for the metric space � leads to asymptotic convergence
across all spaces that satisfy these conditions, for both local and global regression models.

Denoting the weights for a classical regression method with Euclidean predictors and
scalar responses that are assigned to a predictor at level Z ∈ R

p when targeting the estimate
at a fixed predictor level z ∈ R

p by w(Z, z), the Fréchet regression estimator is

m̂⊕(z) = argmin
ω∈�

E
(
d2(X,ω)w(Z, z)

)
.

There are many open problems associated with this class of estimators and object regression
is a subarea in rapid development. Recent work includes a novel perspective with extensions
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to other smoothing methods (Schötz (2022)), dimension reduction (Dong and Wu (2022),
Virta, Lee and Li (2022), Zhang, Li and Xue (2024), Zhang, Xue and Li (2021)) and con-
sistent predictor selection (Tucker, Wu and Müller (2023)). A recent derivation of uniform
convergence over the domain of the Euclidean predictor for local linear estimators made it
possible to obtain consistent time warping identification for object-valued functional data
through pairwise warping comparisons and also to obtain consistent estimates for the loca-
tion of extrema of functionals such as a specified eigenvalue for symmetric positive definite
matrices as random objects (Chen and Müller (2022)). This result also facilitated the devel-
opment of a single-index version for Fréchet regression, which enhances the flexibility of the
global version of the model and includes inference for the the predictors (Bhattacharjee and
Müller (2023), Ghosal, Meiring and Petersen (2023)). However, much further work is needed
on inference for object regression. Another class of object regression models that is of po-
tential interest but not sufficiently explored is transport regression (Zhu and Müller (2023b)),
which was initially developed for distributional data, where one can introduce a transport
algebra (Zhu and Müller (2023a)).

Another relevant issue is the modeling of noise contamination in metric statistics. The
additive noise model commonly employed in Euclidean settings is no longer feasible, as
there is no addition operation in metric spaces. However, noise can be modeled by random
perturbation maps P : � → � that satisfy (Chen and Müller (2022))

ω = argminx∈�E
[
d2(

P(ω), x
)]

for all ω ∈ �.

This is the equivalent of the postulate that an additive error e in a Euclidean setting satisfies
Ee = 0, while E(e2) = σ 2 corresponds to E[d2(P(ω),ω)] = σ 2 in the general case.

In addition to location estimation another important thread in statistics is the estimation of
spread, which is essential for uncertainty quantification. Plugging the Fréchet mean into the
Fréchet variance function (4) gives the Fréchet variance

(6) VF = Ed2(X,μ⊕), V̂F = 1

n

n∑
i=1

d2(Xi, μ̂⊕),

for which under suitable entropy conditions a central limit theorem holds,

n1/2(V̂F − VF )� N
(
0, σ 2

F

)
.

This can be used to obtain an ANOVA-like test to compare populations of random objects
as well as inference for change-points in a sequence of random objects (Dubey and Müller
(2019), Dubey and Müller (2020b)).

It is easy to see that when � = R with the Euclidean metric, the empirical Fréchet
variance (6) equals the classical sample variance σ 2. For Xi ∈ R, it is well known that
σ̂ 2 = 1

n−1
∑n−1

i=1 (Xi − X̄)2= 1
2n(n−1)

∑n
i,j=1(Xi − Xj)

2 and this also holds in Hilbert spaces,

as E〈X −EX,X −EX〉=1
2E〈X −X′,X −X′〉 where X′ is an independent copy of X. How-

ever, the analogous equality does not hold in general metric spaces, and a second option for
quantifying spread is then metric variance (Dubey and Müller (2020a)),

(7) Var�(X) = 1

2
Ed2(

X,X′), where X′ is an independent copy of X ∈ �.

This notion can also be extended to metric covariance and metric correlation,

Cov�(X,Y ) = 1

4
E

(
d2(

X,Y ′) + d2(
X′, Y

) − 2d2(X,Y )
)
,

ρ�(X,Y ) = Cov�(X,Y )√
Cov�(X,X)Cov�(Y,Y )

.
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As already noted, the sample version of Var�(X) in the special case � = R becomes
σ̂ 2 = 1

2n(n−1)

∑n
i,j=1(Xi − Xj)

2. An advantage of metric variance/covariance is that these
measures do not rely on the potentially arduous task of obtaining the Fréchet mean in a
first step. If (�,d) is such that K(x, y) = d2(x, y) is a kernel of negative type (Klebanov
(2005)), that is, for all n > 1, x1, . . . , xn ∈ � and a1, . . . , an ∈ R with

∑n
i=1 ai = 0 one has∑n

i=1
∑n

j=1 aiajK(xi, xj ) ≤ 0, results of Schoenberg (1937) and Schoenberg (1938) imply
that metric correlation has the desirable property that −1 ≤ ρ�(X,Y ) ≤ 1. The main dis-
tinction between metric correlation and distance correlation, another measure of dependence
between paired metric space data (Lyons (2013), Székely and Rizzo (2017)) is that the latter
is tailored to measure probabilistic independence rather than to quantify the strength of “posi-
tive” or “negative” association, which is the target of metric correlation. The notion of metric
covariance is based on pairwise distances between the random objects in a sample for the
empirical version and on expected pairwise distances according to the probability measure P

in the population version. This motivated us to consider these distances as a basic character-
istic of the distributional properties of random objects that are otherwise hard to assess. To
quantify this notion, for any fixed ω ∈ � the distances to the random objects as determined
by the underlying measure P are then of interest. They are captured by the distribution of the
distances between ω and any random element taking values in �, which then leads to dis-
tance profiles indexed by ω. In the following sections, we explore the properties of distance
profiles and how optimal transports between the corresponding distributions can be utilized
to obtain transport ranks, transport quantiles and inference to compare populations of random
objects.

3. Distance profiles, transport ranks and transport quantiles. To introduce and mo-
tivate these key notions, we assume that data and random objects of interest are situated in a
totally bounded separable metric space (�,d). Consider a probability space (S,S,P), where
S is a sample space, S is a sigma algebra of subsets of S, and P is a probability measure.
A random object X is an �-valued random variable, that is, a measurable map X : S → �

and P is a Borel probability measure that governs the distribution of X, X ∼ P , that is,
P(A) = P({s ∈ S : X(s) ∈ A}) =: P(X ∈ A) = P(X−1(A)) =: PX−1(A), for any Borel mea-
surable A ⊆ �. For any ω ∈ �, let Fω denote the cumulative distribution function (cdf) of the
distribution of the distance between ω and a random element X that is distributed according
to P . In our notation, we suppress the dependence of Fω on P and d .

Formally, for any t ≥ 0, we define the distance profile at ω as

(8) Fω(t) = P
(
d(ω,X) ≤ t

)
,

so that Fω is a one-dimensional distribution that captures the probability mass enclosed by a
metric ball in � that has center ω and radius t , for all t ≥ 0. Thus the distance profile at ω is
the distribution of the distances that need to be covered to reach other elements of � when
starting out at ω, as dictated by the distribution P of the random objects X. When t → 0, the
distance profile at ω, Fω(t), has the form of a small ball probability around ω (Dabo-Niang
(2002), Vakhania, Tarieladze and Chobanyan (1987)). An element ω that is centrally located,
that is, close to most other elements, will have a distance profile with more mass near 0, in
contrast to a distantly located or outlying element whose distance profile will assign mass
farther away from 0. If distance profiles have densities, for a centrally located ω the density
will have a mode near 0, while the density near 0 will be small for a distantly located ω. Thus
{Fω : ω ∈ �} is a family of one-dimensional distributions indexed by � that inform about the
location of ω relative to X ∼ P .

The collection of distance profiles {Fω : ω ∈ �} represents the one-dimensional marginals
of the stochastic process {d(ω,X)}ω∈�, which is well defined in the sense of the Kolmogorov
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existence theorem (see Proposition 1 for details). These simple marginals uniquely character-
ize the underlying measure P , if (�,d) is a metric space such that the kernel K : �×� →R

given by K(ω,ω′) = dθ (ω,ω′) for a θ > 0 is of strong negative type (Klebanov (2005), Lyons
(2013)). This means that for all Borel probability measures P on � and all measurable func-
tions h : � → R it holds that

∫
�

∫
� K(ω,ω′)h(ω)h(ω′)dP(ω)dP(ω′) ≤ 0 with equality if

and only if h = 0 P -a.e. Equivalently, for all Borel probability measures P1, P2 on � one has∫
�

∫
�

K
(
ω,ω′) dP1(ω)dP1

(
ω′)

+
∫
�

∫
�

K
(
ω,ω′) dP2(ω)dP2

(
ω′) − 2

∫
�

∫
�

K
(
ω,ω′) dP1(ω)dP2

(
ω′) ≤ 0,

(9)

where equality holds if and only if P1 = P2; for further discussion, see Section 8. This char-
acterization of the underlying measures motivates the use of distance profiles to obtain infor-
mation about the complex distribution of the random objects X. Empirical estimates of the
distance profiles that will be used for statistical inference are introduced below. A basic result
concerning distance profiles is as follows.

PROPOSITION 1. The stochastic process {d(ω,X)}ω∈�, for which the distance profiles
{Fω : ω ∈ �} as defined in (8) are the one-dimensional marginals, is well defined. Suppose
that for some θ > 0, (�,dθ ) is of strong negative type (9) and that P1, P2 are two probability
measures on �. Then P1 = P2 if and only if FP1

ω (u) = FP2
ω (u) for all ω ∈ � and u ≥ 0, where

FP1
ω and FP2

ω are the distance profiles of ω with respect to P1 and P2.

Consider the distance profile FX of a random object X ∈ �, FX(u) = PX′(d(X,X′) ≤ u)

= ∫
S I(d(X,X′(s)) ≤ u)dP(s), where X′ is an independent copy of X. For each ω, the push-

forward map of Fω to FX , given by F−1
X (Fω(·)), determines the optimal transport from the

distance profile Fω to the distance profile FX . Here and throughout, F−1 denotes the quantile
function corresponding to a cdf F , F−1(u) = inf{x ∈ R : F(x) ≥ u}, for u ∈ (0,1). We utilize
the optimal mass transport map

(10) HX,ω(u) = F−1
X

(
Fω(u)

) − u, u ≥ 0;
see, for example, Ambrosio, Gigli and Savaré (2008), to assign a measure of centrality to
an element ω ∈ � with respect to P . When Fω is continuous, by a change of variable, the
integral

(11)
∫

HX,ω(u)dFω(u) =
∫ 1

0

{
F−1

X (u) − F−1
ω (u)

}
du

provides a summary measure of the mass transfer when transporting Fω to FX .
The utility of this notion is that if ω is more centrally located than X with regard to the

measure P , we expect the mass transfer to be predominantly from left to right and the mag-
nitude of the integral in (11) to reflect the outlyingness differential between ω and a random
object X,X ∼ P . For example, for a distribution P that is symmetric around a central point
ω0 and assigns less mass when moving away from ω0, we expect that the integral (11) with
ω = ω0 is relatively large and the magnitude of the integral (11) is decreasing as the distance
from ω0 increases. This motivates to take the expected value of the integral in (11) to quantify
the degree of centrality or outlyingness of an element ω.

An illustration is in Figure 1 for the simple case where X is a bivariate Gaus-
sian random variable with mean zero and covariance diag(2,1). For the points x ∈
{(0,0), (2,0), (4,0), (6,0)} and ω = (2,2), their corresponding distance profiles are depicted
as densities fx and fω in the left panel, where the distances from x to the rest of the data
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FIG. 1. Left: Distance profiles, represented by the corresponding densities, at five points as indicated, with
respect to a bivariate Gaussian distribution with mean zero and covariance diag(2,1). Right: Transport maps
subtracted by identity Hx,ω as per (10) for x ∈ {(0,0), (2,0), (4,0), (6,0)} and ω = (2,2), where negative (posi-
tive) values indicate transport to the right (left).

are seen to increase as x moves away from the origin, which is exactly what one expects.
For x ∈ {(0,0), (2,0), (4,0), (6,0)}, the transport maps Hx,ω as per (10) that move mass
from Fω to Fx for the fixed element ω = (2,2) are in the right panel. For ω = (2,2), mass
moves to the left when transporting Fω to Fx for x ∈ {(0,0), (2,0)}, which are closer to the
origin, and moves to the right for x ∈ {(4,0), (6,0)}, which are farther away from the origin.
Another example based on the U.S. electricity generation compositional data in Section 7.4
is shown in Figure 2. Transporting mass from the distance profile of ω = New Jersey (NJ) to
the profiles x of Maryland (MD), Massachusetts (MA), Louisiana (LA) to Rhode Island (RI),
one moves from the profile of a point in the middle of the ternary plot toward the profiles
of points closer to the boundary of the compositional space. The mass transport moves mass
mostly to the left when transporting Fω to Fx for x = {MD,MA} and unambiguously to the
right for x = RI.

This motivates the notion of transport ranks to measure centrality of an element ω ∈ �

with respect to P as the expit of the expected integrated mass transfer when transporting Fω

FIG. 2. Left: Ternary plot of compositions of electricity generation in the year 2000 for the 50 states in the U.S.,
where the points are colored according to their transport ranks. Right: Mass transport maps Hx,ω as per (10) for
the transports from ω = NJ to x ∈ {MD,MA,LA,RI}.
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to FX , where P = PX−1. We use the expit function expit(x) = ex/(1+ex) in the definition of
these ranks to ensure that the proposed ranks are scaled to lie in (0,1); any strictly monotone
invertible function from R to [0,1] can be used for this purpose. Formally,

(12) Rω = expit
[
E

{∫ 1

0

[
F−1

X (u) − F−1
ω (u)

]
du

}]
.

The transport rank of ω quantifies the aggregated preference of ω with respect to the data
cloud. The greater the transport rank of ω is, the more centered ω is relative to the sample
elements. Equipped with an ordering of the elements of � by means of their transport ranks,
we define the transport median set M⊕ of P as the collection of points in the support �P ⊂
� of P , which have maximal transport rank and are therefore most central,

(13) M⊕ = argmax
ω∈�P

Rω.

The distance profiles of the data objects together with the transport ranks and the transport
median set are the key ingredients of the proposed toolkit to quantify centrality. These devices
lend themselves to devise distance profile based methods for cluster analysis, classification
and outlier detection, all of which are challenging when one deals with random objects. The
set of maximizers of Rω in �P constitutes the transport median set defined in (13). Observ-
ing that the function Rω is uniformly continuous in ω by Lemma S.3 in the Supplementary
Material, the transport median set is guaranteed to be nonempty whenever �P is compact. If
� is a length space that is complete and locally compact, the Hopf–Rinow theorem (Chavel
(2006)) implies that if �P is any bounded closed subset of �, it is guaranteed to be compact.

Once a center-outward ordering of the elements of � has been established through their
transport ranks, these ranks can be utilized in numerous ways. One application is to define
level sets of the form Lα = {ω ∈ � : Rω = α} and nested superlevel sets L+

α = {ω ∈ � : Rω ≥
α}. By definition, L+

α1
⊆ L+

α2
whenever α1 ≥ α2. Due to the continuity of Rω (see Lemma S.3

in the Supplementary Material), the sets Lα and L+
α are closed. Moreover when (�,d) is a

bounded, complete and locally compact length space, again by the Hopf–Rinow theorem Lα

and L+
α are compact as well. Superlevel sets L+

α can be used to define transport quantile sets.
These can be viewed as a generalization of univariate quantiles to general random objects.
Specifically, a ζ -level transport quantile set can be defined as the intersection of level sets Lα

such that P(X ∈ L+
α ) ≥ ζ , for ζ ∈ (0,1). Complements of superlevel sets can be used to iden-

tify potential outliers by highlighting observations with low transport ranks. Data trimming
can be achieved by excluding points that have transport ranks lower than a suitably chosen
threshold α0; one then might consider maximizers of transport ranks over trimmed versions
of �P to obtain trimmed analogues of the transport median set M⊕ and also trimmed Fréchet
means.

4. Properties of distance profiles and transport ranks. We discuss here some desir-
able properties of distance profiles, transport ranks and the transport median set that are ap-
propriately modified versions of analogous properties of classical ranks.

Lipschitz continuity of transport ranks. By Lemma S.2 in Section S.3 in the Supplemen-
tary Material, the distance profiles Fω(·) and the associated quantile function representations
F−1

ω (·) are uniformly Lipschitz in ω provided that the distance profiles have uniformly upper
bounded densities with respect to the Lebesgue measure. This means that Fω1 and Fω2 are
uniformly close to each other as long as ω1 and ω2 are close, and the distance between Fω1

and Fω2 is upper bounded by a constant factor of d(ω1,ω2). Moreover transport ranks Rω are
uniformly Lipschitz in ω, see Lemma S.3 in the Supplementary Material.
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Invariance of transport ranks. Let (�̃, d̃) be a metric space. A map h : � → �̃ is isometric
if d(ω1,ω2) = d̃(h(ω1), h(ω2)) for all ω1,ω2 ∈ �. Theorem 4.1(a) establishes the invari-
ance of distance profiles, and thereby of transport ranks, under isometric transformations.
In Euclidean spaces, this ensures that the distance profiles are invariant under orthogonal
transformations such as rotations.

Transport modes and center-outward decay of transport ranks. Consider a situation where
the distribution P of X concentrates around a point ω⊕ ∈ �. Specifically, if there exists an
element ω⊕ ∈ � such that

(14) Fω⊕(u) ≥ Fω(u)

for any ω ∈ � and any u ≥ 0, we refer to ω⊕ as an �-valued transport mode of P . Condition
(14) states that a d-ball of radius u around ω⊕ contains more mass under P than a similar ball
around any other point in �. According to Theorem 4.1(b), if P has a transport mode, then
the transport rank of the transport mode cannot be smaller than that of any other ω ∈ � and
therefore, a transport mode is always contained in the transport median set. For distributions
that concentrate around their unique Fréchet mean (Fréchet (1948)), the Fréchet mean is the
transport mode, and hence is contained in the transport median set; for the special case of
networks, see Lunagómez, Olhede and Wolfe (2021). Theorem 4.1(c) provides a characteri-
zation of the radial ordering induced by the transport rank for the special case where the data
distribution on � has a transport mode ω⊕, by considering curves of the form γ : [0,1] → �

that originate from ω⊕, that is, γ (0) = ω⊕. According to Theorem 4.1(c), transport ranks are
nonincreasing along curves originating from a transport mode ω⊕, whenever P is such that
the distance profiles decay systematically along the curve γ (t) as t is increasing.

Characterization of the probability measure P through transport ranks. Theorem 4.1(d)
shows that when (�,d) is of strong negative type, the comprehensive set of all transport
ranks {Rω}ω∈� uniquely characterizes the underlying measure.

THEOREM 4.1. For a separable metric space (�,d) the distance profiles Fω and the
transport ranks Rω satisfy the following properties:

(a) Let h : � → �̃ be a bijective isometric measurable map between (�,d) and (�̃, d̃)

and Ph(·) = P(h−1(·)) the push-forward measure on �̃. Then F
Ph

h(ω)(u) = FP
ω (u) for all u ∈

R, hence R
Ph

h(ω) = RP
ω , where FP

ω (u) = P(d(ω,X) ≤ u) and X is a �-valued random element

such that P = PX−1, F
Ph

h(ω)(u) = P(d̃(h(ω),h(X)) ≤ u), RP
ω is the transport rank of ω with

respect to P and R
Ph

h(ω) is the transport rank of h(ω) with respect to Ph.
(b) If ω⊕ is a transport mode of P as per (14), Rω⊕ ≥ 1/2. Moreover Rω⊕ ≥ Rω for any

ω ∈ � and ω⊕ ∈ M⊕.
(c) Suppose ω⊕ is a transport mode of P . Let γ : [0,1] → � be curve in (�,d) such

that γ (0) = ω⊕ and Fγ (s)(u) ≥ Fγ (t)(u) for all u ∈ R and 0 ≤ s < t ≤ 1. Then Rγ(s)(u) ≥
Rγ(t)(u) for all u ∈ R and 0 ≤ s < t ≤ 1.

(d) Suppose the metric space (�,d) is of strong negative type (9) and P1, P2 are two
probability measures on the space. Then P1 = P2 if and only if RP1

ω = RP2
ω for all ω ∈ �,

where RP1
ω and RP2

ω are the transport ranks of ω with respect to P1 and P2.

5. Estimation and large sample properties. While so far we have introduced the no-
tions of distance profiles, transport ranks and transport median sets at the population level, in
practice one needs to estimate these quantities from a data sample of random objects {Xi}ni=1
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consisting of n independent realizations of X. To obtain the distance profiles Fω, ω ∈ �P

from a sample, we use empirical estimates

(15) F̂ω(t) = 1

n

n∑
i=1

I
(
d(ω,Xi) ≤ t

)
, t ≥ 0,

where I(A) is the indicator function for an event A.
Replacing expectations with empirical means and using estimated distance profiles F̂Xi

given by F̂Xi
(t) = 1

n−1
∑

1≤j≤n,j �=i I(d(Xj ,Xi) ≤ t) for t ≥ 0 as surrogates of FXi
, we obtain

estimates for the transport rank of ω ∈ � defined in (12) as

(16) R̂ω = expit

[
1

n

n∑
i=1

{∫ 1

0

[
F̂−1

Xi
(u) − F̂−1

ω (u)
]
du

}]
.

The term
∫ 1

0 [F̂−1
Xi

(u)− F̂−1
ω (u)]du provides a comparison between the outlyingness of ω and

that of Xi ; mass movement predominantly to the right (left) indicates that ω is more central
(outlying) compared to Xi , respectively. Finally, we define the estimated transport median set

(17) M̂⊕ = argmax
ω∈{X1,X2,...,Xn}

R̂ω.

To obtain asymptotic properties of these estimators and convergence toward their popula-
tion targets, we require the following assumptions.

ASSUMPTION 1. Let N(ε,�,d) be the covering number of the space � with balls of
radius ε and logN(ε,�,d) the corresponding metric entropy. Then

(18) ε logN(ε,�,d) → 0 as ε → 0.

ASSUMPTION 2. For every ω ∈ �, Fω is absolutely continuous with continuous density
fω. For ω = inft∈supp(fω) fω(t) and ω = supt∈R fω(t), ω > 0 for each ω ∈ � and there
exists  > 0 such that supω∈� ω ≤ .

Assumptions 1 and 2 are required for Theorem 5.1, which provides the uniform conver-
gence of F̂ω to Fω. The entropy condition Assumption 1 serves to overcome the dependence
between the summands in the estimator of the transport rank and to establish uniform con-
vergence to the population transport ranks. Assumption 2 is a smoothness condition of the
probability measure P , which is widely satisfied. Examples include absolutely continuous
distributions with compact support in a Euclidean space or probability distributions on a Rie-
mannian manifold, where, after applying Riemannian log maps, the transformed distributions
on tangent spaces are absolutely continuous with compact support.

For any t ≥ 0, Fω(t) = E(F̂ω(t)). For functions yω,t : � → R with yω,t (x) = I{d(ω,x) ≤
t} and the function class F = {yω,t : ω ∈ �, t ∈ R}, the following result establishes that under
Assumptions 1 and 2 the function class F is P -Donsker.

THEOREM 5.1. Under Assumptions 1 and 2, {√n(F̂ω(t) − Fω(t)) : ω ∈ �, t ∈ R} con-
verges weakly to a zero-mean Gaussian process GP with covariance given by

C(ω1,t1),(ω2,t2) = Cov
(
yω1,t1(X), yω2,t2(X)

)
for ω1,ω2 ∈ � and t1, t2 ∈ R.
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Assumption 1 is a restriction on the complexity of the metric space (�,d). It is satisfied
for a broad class of spaces. In particular, any space (�,d) such that logN(ε,�,d) = O( 1

εα )

for some α < 1 satisfies Assumption 1. This is true for any (�,d), which can be repre-
sented as a subset of elements in a finite-dimensional Euclidean space, for example, the
space of graph Laplacians or network adjacency matrices with a fixed number of nodes
(Ginestet et al. (2017), Kolaczyk et al. (2020)), symmetric positive definite matrices of a
fixed size (Dryden, Koloydenko and Zhou (2009)), simplex valued objects in a fixed dimen-
sion (Jeon and Park (2020)) and the space of phylogenetic trees with the same number of
tips (Billera, Holmes and Vogtmann (2001), Kim, Rosenberg and Palacios (2020)). It holds
that logN(ε,�,d) = O(ε−α) for any α < 1 when � is a VC-class of sets or a VC-class of
functions (van der Vaart and Wellner (1996), Theorems 2.6.4 and 2.6.7). Assumption 1 also
holds for p-dimensional smooth function classes Cα

1 (X ) (van der Vaart and Wellner (1996),
p. 155) on bounded convex sets X in R

p equipped with the ‖ · ‖∞-norm (van der Vaart and
Wellner (1996), Theorem 2.7.1) or the ‖ · ‖r,Q-norm for any probability measure Q on R

p

(van der Vaart and Wellner (1996), Corollary 2.7.2), if α ≥ p + 1.
Of particular interest for many applications is the case when � is the space of one-

dimensional distributions on some compact interval I ⊂ R with the 2-Wasserstein metric
d = dW defined in (1) (Petersen and Müller (2019)). If � is represented using the quantile
functions of the distributions then, without any further assumptions, logN(ε,�,dW) is upper
and lower bounded by a factor of 1/ε (Blei, Gao and Li (2007), Proposition 2.1) and does
not meet the criterion in Assumption 1. However, if we assume that the distributions in �

are absolutely continuous with respect to the Lebesgue measure on I with smooth densities
uniformly taking values in some interval [l0, u0], 0 < l0 < u0 < ∞, then � equipped with
dW satisfies Assumption 1. To see this, observe that with the above characterization of � the
quantile functions corresponding to the distributions in � have smooth derivatives that are
uniformly bounded. With Qderiv denoting the space of the uniformly bounded derivatives of
the quantile functions in �, logN(ε,Qderiv,‖ · ‖1) = O(ε−1), where ‖ · ‖1 is the L1 norm
under the Lebesgue measure on I (van der Vaart and Wellner (1996), Corollary 2.7.2). Using
Lemma 1 in Gao and Wellner (2009), with F ≡ Qderiv, G ≡ �, α(x) = x and φ(ε) = K/ε for
some constant K , logN(ε,�,dW) = O(ε−1/2), which meets the requirement of Assump-
tion 1. If � is the space of p-dimensional distributions on a compact convex set I ⊂ R

p ,
represented using their distribution functions endowed with the Lr metric with respect to the
Lebesgue measure on I , then Assumption 1 is satisfied if � ⊂ Cα

1 (I ) for α ≥ p + 1.
Next, we discuss the asymptotic convergence of the estimates R̂ω of transport ranks. The-

orem 5.2 establishes a
√

n-rate of convergence uniformly in ω.

THEOREM 5.2. Under Assumptions 1 and 2,√
n sup

ω∈�

|R̂ω − Rω| = OP(1).

To conclude this section, we consider the convergence of the estimated transport median
set M̂⊕ to M⊕ in the Hausdorff metric,

(19) ρH (M̂⊕,M⊕) = max
(

sup
ω∈M̂⊕

d(ω,M⊕), sup
ω∈M⊕

d(ω,M̂⊕)
)
,

where for any ω ∈ � and any subset A ⊂ �, d(ω,A) = infs∈A d(ω, s). We derive uniform
Lipschitz continuity of transport ranks Rω in ω (Lemma S.3 in the Supplementary Material)
and require the following additional assumption.

ASSUMPTION 3. For some η′ > 0, for any 0 < ε < η′,
α(ε) = inf

ω̃∈M⊕
inf

d(ω,ω̃)>ε
|Rω − Rω̃| > 0.
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Assumption 3 deals with the identifiability of transport medians and stipulates that the
transport median set is a union of single point sets, which are separated from each other by a
minimum fixed distance. In particular, unimodal probability measures satisfy Assumption 3.
This assumption is needed to derive our next result on the consistency of the estimated trans-
port median set for the true transport median set in the Hausdorff metric.

THEOREM 5.3. Assume that the distribution P is such that M⊕ is nonempty. Under
Assumptions 1–3,

ρH (M̂⊕,M⊕) = oP(1).

6. Two-sample inference with distance profiles.

6.1. Construction of a two-sample test. Assume that X1,X2, . . . ,Xn is a sample of ran-
dom objects taking values in �, generated according to a Borel probability measure P1 on �,
and that Y1, Y2, . . . , Ym is another sample of �-valued random objects generated analogously
according to a Borel probability measure P2. Two-sample testing in this setting concerns the
null (20) and alternative (21) hypotheses

H0 : P1 = P2,(20)

H1 : P1 �= P2.(21)

Nonparametric two-sample tests have been studied extensively in many settings. To ex-
tend this classical problem to object data poses new challenges. Existing methods that are
based on distances, such as the graph based tests (Chen and Friedman (2017)) and the energy
test (Székely and Rizzo (2004)), either require tuning parameters for their practical imple-
mentation or lack theoretical guarantees on the power of the test, particularly when using
permutation cut-offs for type I error control. We propose here a two-sample test based on the
distance profiles of the observations. The proposed test is tuning parameter-free, has rigor-
ous asymptotic type I error control under H0 (20) and is guaranteed to be powerful against
contiguous alternatives for sufficiently large sample sizes. While it was presented at the Rietz
Lecture and derived independently, our test statistic is similar in spirit to a test proposed in
Wang et al. (2023). We note that our results are derived under weaker assumptions and pro-
vide, in addition to consistency under the null hypothesis, power guarantees under contiguous
alternatives, as well as theoretical guarantees for the corresponding permutation tests.

We require some notation. For ω ∈ �, the distance profiles of ω with respect to X ∼ P1
and Y ∼ P2, respectively, are given by FX

ω (·) and FY
ω (·), where for u ∈R,

(22) FX
ω (u) = P

(
d(x,X) ≤ u

)
and FY

ω (u) = P
(
d(x,Y ) ≤ u

)
.

Let F̂ X
X1

(·), F̂ X
X2

(·), . . . , F̂ X
Xn

(·) be the estimated in-sample distance profiles of X1, . . . ,Xn,
respectively, with respect to the observations from P1, that is,

F̂ X
Xi

(u) = 1

n − 1

∑
j �=i

I
(
d(Xi,Xj ) ≤ u

)
.

Then we obtain the out-of-sample distance profiles of X1, . . . ,Xn, respectively, with respect
to the observations from P2, through F̂ Y

X1
(·), F̂ Y

X2
(·), . . . , F̂ Y

Xn
(·), where

F̂ Y
Xi

(u) = 1

m

m∑
j=1

I
(
d(Xi, Yj ) ≤ u

)
.
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Similarly, we estimate the in-sample and the out-of-sample distance profiles of Y1, . . . , Ym

with respect to the observations from P2 and P1, respectively, given by F̂ Y
Y1

(·), F̂ Y
Y2

(·), . . . ,
F̂ Y

Ym
(·) and F̂ X

Y1
(·), F̂ X

Y2
(·), . . . , F̂ X

Ym
(·), respectively, where for u ≥ 0,

F̂ Y
Yj

(u) = 1

m − 1

∑
j �=i

I
(
d(Yj , Yi) ≤ u

)
and

F̂ X
Yj

(u) = 1

n

n∑
i=1

I
(
d(Yj ,Xi) ≤ u

)
.

With T X
nm and T Y

nm defined as

T X
nm(X,Y ) = 1

n

n∑
i=1

∫ {
F̂ X

Xi
(u) − F̂ Y

Xi
(u)

}2 du

and

T Y
nm(X,Y ) = 1

m

m∑
i=1

∫ {
F̂ X

Yi
(u) − F̂ Y

Yi
(u)

}2 du,

the proposed test statistic Tnm(X,Y ) is

(23) Tnm(X,Y ) = nm

n + m

{
T X

nm + T Y
nm

}
.

To enhance flexibility, we also consider a generalized weighted version of the test statistic,
where for each observation Xi or Yi , we allow for data adaptive weight profiles ŵXi

(·) and
ŵYi

(·) that can be tuned appropriately to enhance the detection capacity of the test statistic.
This leads to weighted versions of T X

nm and T Y
nm,

T X,w
nm (X,Y ) = 1

n

n∑
i=1

∫
ŵXi

(u)
{
F̂ X

Xi
(u) − F̂ Y

Xi
(u)

}2 du

and T Y,w
nm (X,Y ) = 1

m

m∑
i=1

∫
ŵYi

(u)
{
F̂ X

Yi
(u) − F̂ Y

Yi
(u)

}2 du

and the weighted test statistic

(24) T w
nm(X,Y ) = nm

n + m

{
T X,w

nm + T Y,w
nm

}
.

Note that the test statistic in equation (23) is a version of the generalized test statistic in
equation (24) with ŵXi

(·) = ŵYi
(·) ≡ 1. Hereafter, we suppress the dependence of T X

nm, T Y
nm,

Tnm, T X,w
nm , T Y,w

nm and T w
nm on (X,Y ) as this will be clear from the context.

Suppose that for each x ∈ �, there exists a population limit of the estimated data adaptive
weight profile ŵx(·) given by wx(·) such that

(25) sup
x∈�

sup
u

∣∣ŵx(u) − wx(u)
∣∣ = oP(1).

The weight profile dependent quantities

Dw
XY (P1,P2) = E

{∫
wX′(u)

(
FX

X′(u) − FY
X′(u)

)2 du

}
+E

{∫
wY ′(u)

(
FX

Y ′(u) − FY
Y ′(u)

)2 du

}
,

(26)
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where FX
ω (·) and FY

ω (·) are as defined in equation (22) and X′ ∼ P1 and Y ′ ∼ P2, capture
the population version of the proposed test statistic (24). First, observe that under H0, for any
wx(·), x ∈ �, it holds that Dw

XY (P1,P2) = 0. Next, we show that under mild conditions on
the weight profiles, (�,d), P1 and P2, Dw

XY (P1,P2) = 0 if and only if P1 = P2.
Let P(�,d) denote the class of all Borel probability measures on (�,d) that are uniquely

determined by the measure of all open balls or equivalently by the set of distance profiles,
that is, for Q1,Q2 ∈ P(�,d), Q1 = Q2 if and only if F

Q1
ω (u) = F

Q2
ω (u) for all ω ∈ � and

u ≥ 0. In fact, P(�,d) corresponds to the set of all Borel probability measures on (�,d) when
the metric d is such that dθ is of strong negative type (9) for some θ > 0 (see Proposition 1).
If wω(u) > 0 for any ω ∈ � and for any u ≥ 0, then Dw

XY = 0 implies that FX
ω (u) = FY

ω (u)

for almost any u ≥ 0 and for any ω in the union of the supports of P1 and P2. Hence, if
� is contained in the union of the supports of P1 and P2, then Dw

XY (P1,P2) = 0 implies
that P1 = P2 whenever P1,P2 ∈ P(�,d). In the following, we will suppress (P1,P2) in the
notation Dw

XY (P1,P2).
We will use Dw

XY in Section 6.2 to evaluate the power performance of the test by construct-
ing a sequence of contiguous alternatives that approach the null hypothesis (20). To obtain
the asymptotic power of the test, we work with qα , the asymptotic critical value for rejecting
H0, where qα = inf{t : �L(t) ≥ 1 − α} and �L(·) is the cumulative distribution function of
the asymptotic null distribution corresponding to the law of L (see Theorem 6.1). Since L

is an infinite mixture of chi-squares with mixing weights depending on the data distribution
under H0, we estimate qα using a random permutation scheme in practice, as follows.

Let �nm denote the collection of all (n + m)! permutations of {1,2, . . . , n + m} and �

a random variable that follows a uniform distribution on �nm and is independent of the ob-
servations X1, . . . ,Xn and Y1, . . . Ym. Let V1,V2, . . . , Vn+m denote the pooled sample where
Vi = Xi if i ≤ n and Vi = Yi−n if i ≥ n + 1. Let �1,�2, . . .�K denote i.i.d. replicates of �.
Each �j = (�j (1), . . . ,�j (n + m)) is a random permutation of {1,2, . . . , n + m} and when
applied to the data yields V�j

= {V�j (1), V�j (2), . . . , V�j (n+m)}, j = 1, . . . ,K , which consti-
tute a collection of randomly permuted pooled data. For each j = 1, . . . ,K , split the data V�j

into X�j
= {V�j (1), V�j (2), . . . , V�j (n)} and Y�j

= {V�j (n+1), V�j (n+2), . . . , V�j (n+m)}.
With X�j

and Y�j
being the proxies for the two samples of sizes n and m, respectively,

evaluate the test statistic replicates T�j
= T w

nm(X�j
,Y�j

). Define �̂nm(·) as

(27) �̂nm(t) = 1

K

K∑
j=1

I(T�j
≤ t),

which approximates the randomization distribution of T w
nm using the random permutations

�1,�2, . . . ,�K . Then a natural estimate of qα is

(28) q̂α = inf
{
t : �̂nm(t) ≥ 1 − α

}
.

6.2. Theoretical guarantees for type I error control and the asymptotic power of the test.
To establish theoretical guarantees of the proposed test, in particular the limiting distribution
of the test statistic under H0 (20) and the consistency of the test under the alternative (21), we
require additional assumptions, including a modified version of Assumption 2, listed below
as Assumption 5. Assumption 4 requires regularity conditions on the data adaptive weight
profiles to ensure that they have a well behaved asymptotic limit. Assumption 6 is needed so
that none of the group sizes is asymptotically negligible.

ASSUMPTION 4. For each x ∈ �, there exists a population limit of the estimated weight
profiles such that (25) is satisfied; there exists Cw > 0 such that supx∈� supu|wx(u)| ≤ Cw;
for some Lw > 0 it holds that supx∈� |wx(u) − wx(v)| ≤ Lw|u − v|.
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ASSUMPTION 5. For each x ∈ �, X ∼ P1 and Y ∼ P2, FX
x (t) = P(d(x,X) ≤ t) and

FY
x (t) = P(d(x,Y ) ≤ t) are absolutely continuous, with densities f X

x (t) and f Y
x (t), respec-

tively, that satisfy inft∈supp(f X
x ) f

X
x (t) > 0, inft∈supp(f Y

x ) f
Y
x (t) > 0. There exist LX,LY > 0

such that supx∈� supt∈R |f X
x (t)| ≤ LX and supx∈� supt∈R |f Y

x (t)| ≤ LY .

ASSUMPTION 6. There exists 0 < c < 1 such that sample sizes n and m satisfy n/(n +
m) → c as n,m → ∞.

Theorem 6.1 provides the framework for asymptotic type I error control of the test. The
asymptotic distribution of the test statistic Tnm (23), which we will illustrate later in the
simulations, can be directly derived from Theorem 6.1 by plugging in wXi

(·) = wYi
(·) ≡ 1 as

this constant weight profile satisfies Assumption 4 trivially.

THEOREM 6.1. Under H0 (20) and Assumptions 1, 4, 5 and 6, T w
nm converges in distribu-

tion to the law of a random variable L = 2
∑∞

j=1 Z2
jEV (λV

j ), where Z1,Z2, . . . is a sequence
of i.i.d. N(0,1) random variables, V ∼ P where P = P1 = P2 under H0 and for any x ∈ �,
λx

1 ≥ λx
2 ≥ . . . are the eigenvalues of the covariance surface given by

Cx(u, v) = √
wx(u)wx(v)Cov

(
I
(
d
(
x,V ′) ≤ u

)
, I

(
d
(
x,V ′) ≤ v

))
with V ′ ∼ P .

To study the asymptotic power of the proposed test, we consider a sequence of alternatives

Hnm = {
(P1,P2) : X ∼ P1, Y ∼ P2,

with Dw
XY = anm, anm → 0, nm/(n + m)anm → ∞, n,m → ∞}

,
(29)

with Dw
XY as in (26). The {Hnm} form a sequence of contiguous alternatives shrinking toward

H0. The power of the test under this sequence is

(30) βw
nm = PHnm

(
T w

nm > qα

)
,

where qα = inf{t : �L(t) ≥ 1 − α} and �L(·) is the cumulative distribution function of the
asymptotic null distribution corresponding to the law of L in Theorem 6.1. Our next result
shows that the proposed test is consistent against the contiguous alternatives {Hnm} (29).

THEOREM 6.2. Under Assumptions 1, 4, 5 and 6, for a sequence of alternatives Hnm,
the power of the level α test (30) satisfies βw

nm → 1.

Theorem 6.3 below provides theoretical guarantees for the permutation version of the test
based on the empirical cut-offs for the randomization approximation of �L(·) given by �̂nm(·)
(27). The consistency of the estimated critical value q̂α (28) under H0 is given by (32) and
under alternatives P1 �= P2 we consider a mixture distribution P̄ = cP1 + (1 − c)P2 with
0 ≤ c ≤ 1. Assume X̄ = {X̄1, . . . , X̄n} and Ȳ = {Ȳ1, . . . , Ȳm} are i.i.d. samples from P̄ and
T w

nm(X̄, Ȳ ) is the test statistic obtained using the samples X̄ and Ȳ . We show in the proof
of Theorem 6.3 in the Supplementary Material that under Assumptions 1, 4, 5 and 6, The-
orem 6.1 can be utilized to obtain the asymptotic distribution of T w

nm(X̄, Ȳ ) with cumula-
tive distribution �̄L(·) and q̄α = inf{t ≥ 0 : �̄L(t) ≥ 1 − α}. Suppose that �̄L(·) is continu-
ous and strictly increasing at q̄α and n,m → ∞ such that n

n+m
− c = O((n + m)−1/2) and

m
n+m

− (1 − c) = O((n+m)−1/2). Then under Assumptions 1, 4, 5 and 6, |q̂α − q̄α| = oP(1),
that is, q̂α converges to a deterministic limit also for the case where P1 �= P2. This implies
convergence of the power function β̃w

nm → 1 as n,m → ∞, where

(31) β̃w
nm = PHnm

(
T w

nm > q̂α

)
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is the power function of the test under the sequence of the contiguous alternatives Hnm when
using the permutation-derived critical value q̂α instead of qα .

THEOREM 6.3. Under H0 (20) and Assumptions 1, 4, 5 and 6, as n,m → ∞ and K →
∞ it holds that |�̂m,n(t) − �L(t)| = oP(1) for every t which is a continuity point of �L(·).
Suppose that �L(·) is continuous and strictly increasing at qα . Then under H0 (20) and
Assumptions 1, 4, 5 and 6, as n,m → ∞ and K → ∞,

(32) |q̂α − qα| = oP(1).

Assume further that �̄L(·) is continuous and strictly increasing at q̄α and n
n+m

− c = O((n+
m)−1/2) and m

n+m
− (1 − c) = O((n + m)−1/2) as n,m → ∞. Then under Assumptions 1, 4,

5 and 6 for the sequence of alternatives Hnm, the power (31) of the permutation test satisfies
β̃w

nm → 1 as n,m → ∞.

6.3. Empirical experiments. To illustrate the finite-sample performance of the proposed
test, we performed simulation studies for various scenarios. Specifically, random objects in-
cluded samples of random vectors with the Euclidean metric, samples of 2-dimensional dis-
tributions with the L2 metric between corresponding cumulative distribution functions (cdfs),
and samples of random networks from the preferential attachment model (Barabási and Al-
bert (1999)) with the Frobenius metric between the adjacency matrices. In each scenario,
we generated two samples of random objects of equal size n = m = 100 unless otherwise
noted and performed 500 Monte Carlo runs to construct empirical power functions as the
distance of the distributions of the first and second sample varies. The empirical power was
assessed as the proportion of rejections of the test for the significance level 0.05 among the
500 Monte Carlo runs. We used the permutation version of the test and assessed p-values
from K = 1000 permutations through the proportion of permutations yielding test statis-
tics greater than the test statistics computed from the original sample. This proportion is
(K + 1)−1{∑K

j=1 I(T�j
≥ T w

nm) + 1}, with T w
nm in (24) and T�j

for j = 1, . . . ,K defined
in the paragraph just before equation (27), where the case j = 0 corresponds to the original
sample without permutation.

We compared the performance of the proposed test with the energy test (Székely and Rizzo
(2004)) and the graph based test (Chen and Friedman (2017)). For the energy test, we ob-
tained p-values based on 1000 permutations. For the graph based test, similarity graphs of all
the observations pooling the two samples together were constructed as 5-MSTs, as suggested
by Chen and Friedman (2017). Here, MST stands for minimum spanning tree, and a k-MST
is the union of the 1st, . . . , kth MST(s), where a kth MST is a spanning tree connecting all
observations while minimizing the sum of distances between connected observations subject
to the constraint that all the edges are not included in the 1st, . . . , (k − 1)th MST(s). In the
scenarios with samples of multivariate data, we also included comparisons of the proposed
test with the two-sample Hotelling’s T 2 test.

In the following figures illustrating power comparisons, “energy” stands for the energy test
(Székely and Rizzo (2004)), “graph” for the graph based test (Chen and Friedman (2017)),
“Hotelling” for the two-sample Hotelling’s T 2 test and “DP” for the proposed distance
profile-based test (23). For samples of multivariate data endowed with the Euclidean metric,
we generated the data in four scenarios. In the first two scenarios, we generated two samples
of p-dimensional random vectors {Xi}ni=1 and {Yi}mi=1 from a Gaussian distribution N(μ,�)

for dimensions p = 30, 90 and 180, respectively. In the first scenario, the population distri-
butions of random vectors in the two samples differ only in the mean μ while the population
covariance matrix � = U�U� is the same for both samples, where � is a diagonal matrix
with kth diagonal entry cos(kπ/p)+1.5 for k = 1, . . . , p and U is an orthogonal matrix with
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FIG. 3. Power comparison for increasing values of mean difference 1 for two samples of p-dimensional
random vectors sampled from N(μ,�). Here, μ = 0p = (0,0, . . . ,0)� for the first samples and
μ = 11p = 1(1,1, . . . ,1)� for the second samples; � = U�U� for both samples, where � is a diagonal
matrix with kth diagonal entry cos(kπ/p)+ 1.5 for k = 1, . . . , p and U is an orthogonal matrix with first column
p−1/2(1,1, . . . ,1)�. The dashed grey line denotes the significance level 0.05.

first column p−1/2(1,1, . . . ,1)�. Specifically, μ = 0p = (0,0, . . . ,0)� for the first samples
{Xi}ni=1, and μ = 11p = 1(1,1, . . . ,1)� for the second samples {Yi}mi=1, where 1 ranges
from 0 to 1. The results are shown in Figure 3. In addition, we considered another location
shift scenario for lower-dimensional data; see Section S.5 in the Supplementary Material for
details.

In the second scenario, the population distributions of the two samples differ only in scale,
while sharing the same mean μ = 0p . For the first samples {Xi}ni=1, � = 0.8Ip and for the
second samples {Yi}mi=1, � = (0.8 − 2)Ip with 2 ranging from 0 to 0.4. The results are
shown in Figure 4. In the first scenario with location shifts, the proposed test outperforms the
graph based test when the dimension is relatively low (p = 30); the graph based test catches
up when the dimension is high. Meanwhile, the energy test is always the winner in this
scenario. The performance of Hotelling’s T 2 test is the second best when the dimension p is

FIG. 4. Power comparison for increasing values of variance difference 2 for two samples of p-dimensional
random vectors sampled from N(μ,�). Here, μ = 0p for both samples; � = 0.8Ip for the first samples and
� = (0.8 − 2)Ip for the second samples. The dashed grey line denotes the significance level 0.05.
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FIG. 5. Power comparison for increasing values of mean shift 3 of Gaussian components for two samples of
p-dimensional random vectors. Here, the first samples are sampled from N(0p, Ip); the second samples consist
of AZ1 + (1 − A)Z2, where A ∼ Bernoulli(0.5), Z1 ∼ N(−μ, Ip), Z2 ∼ N(μ, Ip), μ = (31�

0.1p,0�
0.9p)�, and

A, Z1 and Z2 are independent. The dashed grey line denotes the significance level 0.05.

less than the sample size n = m = 100 but drops to the bottom when p = 180 and 1 > 0.1.
In the second scenario with scale changes, we find that the proposed test always outperforms
all the other tests.

In the third scenario, the first samples of random vectors {Xi}ni=1 are generated from
the Gaussian distribution N(0p, Ip), and the second samples of random vectors {Yi}mi=1 are
generated from a mixture of two Gaussian distributions with the overall population mean
equaling that of the first samples. Specifically, the second samples consist of independent
copies of AZ1 + (1 − A)Z2, where A ∼ Bernoulli(0.5), Z1 ∼ N(−μ, Ip), Z2 ∼ N(μ, Ip),
μ = (31�

0.1p,0�
0.9p)�, and A, Z1 and Z2 are independent. Here, 3 ranges from 0 to 1. The

results are shown in Figure 5; again, the proposed test outperforms all the other tests.
The fourth scenario compares Gaussian distributions with heavy-tailed distributions,

where the first samples {Xi}ni=1 are generated from N(0p, Ip), and the second samples
{Yi}mi=1 consist of random vectors with components that are independent and identically dis-
tributed following a t distribution with degrees of freedom ranging from 2 to 22. The results
for p ∈ {5,15,60} are in Figure 6; the proposed test outperforms all the other tests.

Next, we considered bivariate probability distributions as random objects, where we
use the L2 distance between corresponding cdfs as the metric between two probability
distributions. Each observation Xi or Yi is a random 2-dimensional Gaussian distribu-
tion N(Z,0.25I2), where Z is a 2-dimensional random vector, with two scenarios: In the
first scenario, Z ∼ N(02,0.25I2) for the first samples and Z ∼ N((δ1,0)�,0.25I2) for
the second samples. In the second scenario, Z ∼ N(02,0.42I2) for the first samples and
Z ∼ N(02,diag((0.4 + δ2)

2I2)) for the second samples. The results are presented in Fig-
ures 7 and 8, respectively. The first scenario showcases location shifts of Z; the proposed test
outperforms the graph based test but is outperformed by the energy test. The second scenario
showcases scale changes of Z, where the proposed test outperforms all the other tests.

We also studied the power of the proposed test for random networks endowed with the
Frobenius metric between adjacency matrices as random objects. Each datum Xi or Yi is a
random network with 200 nodes generated from the preferential attachment model (Barabási
and Albert (1999)) with the attachment function proportional to kγ , where γ = 0 for the first
samples {Xi}ni=1, and γ increases from 0 to 0.5 for the second samples {Yi}mi=1. As shown
in Figure 9, the proposed test outperforms both the energy test and the graph based test. In



METRIC STATISTICS 777

FIG. 6. Power comparison for increasing values of ν for two samples of p-dimensional random vectors. Here,
the first samples are sampled from N(0p, Ip); the second samples consist of random vectors with independent
components, where each component follows a t-distribution with ν degrees of freedom (d.f.). The dashed grey line
denotes the significance level 0.05.

addition to the case with n = m = 100, we performed simulations with larger samples of
sizes n = m = 200. The corresponding results are shown in Figure S.2 in Section S.5 in the
Supplementary Material and they more or less match those for n = m = 100.

7. Extensions and data illustrations.

7.1. Profile metric and object data visualization. Distance profiles induce a new similar-
ity measure in � that we refer to as profile metric dP . It complements the original metric d

and depends on d , the underlying probability measure P and also on the distributional met-
ric in the space of distance profiles, for which we select the Wasserstein metric. The profile
metric quantifies the distance of the profile densities of elements of �,

(33) dP (ω1,ω2) = dW(Fω1,Fω2),

FIG. 7. Power comparison for increasing values of mean shift δ1 of the distribution of the mean for two samples
of random bivariate Gaussian distributions N(Z,0.25I2), where Z ∼ N(02,0.25I2) for the first samples and
Z ∼ N((δ1,0)�,0.25I2) for the second samples. The dashed grey line denotes the significance level 0.05.
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FIG. 8. Power comparison for increasing values of scale change δ2 of the distribution of the mean for two
samples of random bivariate Gaussian distributions N(Z,0.25I2), where Z ∼ N(02,0.42I2) for the first samples
and Z ∼ N(02,diag((0.4 + δ2)2I2) for the second samples. The dashed grey line denotes the significance level
0.05.

where dW is the Wasserstein metric (1) and Fω1 , Fω2 are the distance profiles of ω1, ω2, as
defined in (8). It is not a genuine metric on � but rather a measure of dissimilarity of the
distance profiles of elements of �.

The profile metric dP generally may differ substantially from the original metric d . For
example, two outlying elements of � may be far away from each other in terms of the original
metric d but if they have similar centrality and distance profiles they will have small profile
dissimilarity dP , which could be 0 if their distance profiles coincide. It turns out that the
profile metric is very useful for data analysis, as we will demonstrate in the following. Its
implementation depends on distance profiles, which must be estimated from the available
data, and thus the profile metric itself is only available in the form of an estimate.

To visualize random objects, low-dimensional projections of similarities as afforded by
MDS are a prime tool and any MDS version (Mardia (1978)) can be based on either the
original distance d , in the following referred to as object MDS or alternatively on the profile

FIG. 9. Power comparison for increasing values of γ for two samples of random networks with 200 nodes from
the preferential attachment model. The attachment function is proportional to kγ with γ = 0 for the first samples,
and γ increasing from 0 to 0.5 for the second samples. The dashed grey line denotes the significance level 0.05.
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metric, in the following referred to as profile MDS. In profile MDS, we use the estimated
distance profiles F̂Xi

and the Wasserstein metric dW (1), while we use the distance d in �

for object MDS. In the following, MDS is implemented with cmdscale() in the R built-in
package stats (R Core Team (2020)).

To enhance the graphical illustration of the proposed transport ranks in (12), for implemen-
tations, data applications and simulations we found that partitioning the observed random ob-
jects into a not too large number of k groups according to their transport ranks is advantageous
for visualization and communicating results. Specifically, the range of the transport ranks
of observations within a sample {Xi}ni=1 is partitioned into k bins, Sk = [0, q1/k], Sk−1 =
(q1/k, q2/k], . . . , S1 = (q(k−1)/k,1], where qα is the α-quantile of {R̂Xi

}ni=1 for α ∈ (0,1);
then the j th group consists of observations with transport ranks falling in Sj for j = 1, . . . , k.
Arranging the bins in descending order of transport ranks, these groups are ordered from the
innermost to the outermost, providing a center-outward description of the data; we found that
the choice k = 10 worked well, as illustrated in Figures 10–13 below. The function Create-
Density() in the R package frechet (Chen et al. (2020)) was used to obtain Wasserstein
barycenters of distance profiles for each group.

The code for obtaining distance profiles, transport ranks, object MDS plots and profile
MDS plots is available on GitHub (Chen, Dubey and Müller (2024)).

7.2. Illustrations with simulated data. We start with a simple special case of a Eu-
clidean vector space, where we sampled n = 500 observations {Xi}ni=1 independently from
a p-dimensional Gaussian distribution N(μ,�) for p = 2 and p = 50, with μ = 0 and
� = diag(p,p − 1, . . . ,1). The distance profiles F̂Xi

(15) and transport ranks R̂Xi
(16)

were computed for each observation, adopting the Euclidean metric in R
p . Irrespective of

the type of random objects Xi , the distance profiles F̂Xi
are situated in the space W of one-

dimensional distributions with finite second moments with the Wasserstein metric (1).
For p = 2, the transport ranks (16) based on distance profiles capture the center-outward

ordering of the 2-dimensional Gaussian data and the Wasserstein barycenters of the distance
profiles within each group shift to the right from group 1 to group 10, where the grouping is
as described in Section 7.1, reflecting increased distances from the bulk of data (Figure 10).
Figure 11 demonstrates profile MDS for a simulated sample of n = 500 observations from a
50-dimensional Gaussian distribution N(μ,�) with μ = 0 and � = diag(50,49, . . . ,1) and
shows that profile MDS provides a simple representation by sorting these high-dimensional
Euclidean data along dimension 1.

FIG. 10. Scatterplots of a sample of n = 500 observations generated from a 2-dimensional Gaussian distribu-
tion N(μ,�) with μ = 0 and � = diag(2,1), where the points are colored according to their transport ranks (16)
(left) and grouped into 10 groups according to the quantiles of transport ranks (middle); Wasserstein barycenters
of the distance profiles within each group represented by density functions (right).
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FIG. 11. Two-dimensional (profile) MDS with respect to the Wasserstein metric dW in (1) of the distance profiles
F̂Xi

(15) with ω = Xi of a sample of n = 500 observations generated from a 50-dimensional Gaussian distribution
N(μ,�) with μ = 0 and � = diag(50,49, . . . ,1), where the points are colored according to their transport
ranks (16) (left) and grouped into 10 groups according to the quantiles of transport ranks (middle); Wasserstein
barycenters of the distance profiles within each group (right).

Additional simulation results can be found in the Supplementary Material for random ob-
jects corresponding to 2-dimensional random vectors generated from multimodal distribu-
tions in Section S.6 and for distributional data in Section S.7.

7.3. Illustration with human mortality data. Understanding human longevity has been
of long-standing interest and age-at-death distributions are relevant random objects for this
endeavor. We consider age-at-death distributions for different countries, obtained from the
Human Mortality Database (http://www.mortality.org) for the year 2000 for n = 34 countries,
separately for males and females. The age-at-death distributions are shown in the form of
density functions in Figure S.5 in Section S.8 in the Supplementary Material. To analyze
the data geometry of this sample of random distributions {Xi}34

i=1, we assume that they are
situated in a space (�,d) of distributions equipped with the Wasserstein metric d = dW (1)
and then obtained distance profiles F̂Xi

(15) for ω = Xi for each country.
In Figure 12, we compare profile MDS (based on the distance of profiles, where the

Wasserstein metric is applied for the distributional space where the profiles are situated) in
the left panels and object MDS (based on the original metric d in the object space of distri-
butions); mortality for females is shown in the top panels and for males in the bottom panels.
We find that profile MDS leads to a clearly interpretable one-dimensional manifold represen-
tation for both females and males, where extremes appear at each end, at the red colored end
corresponding to age-at-death distributions indicating reduced and at the green colored end
enhanced longevity. The groups of countries that form the extreme ends are Japan at the en-
hanced and Eastern European countries, such as Russia, Ukraine, Belarus, Latvia and Estonia
at the reduced longevity end. Luxembourg and Belgium belong to the most central group for
both females and males. Spain is among the more outlying countries for females only, with
a longevity increase for females but not for males. One can observe many other interesting
features in terms of the similarity and contrast between females’ and males’ longevity for spe-
cific countries, for example, for Denmark and Netherlands. We find that the one-dimensional
ordering provided by profile MDS facilitates the interpretation and communication of the
main data features, while object MDS is less informative.

Another finding of interest that emerges from profile MDS is that the age-at-death distri-
butions for males for the outlying countries are more outlying than the corresponding age-at-
death distributions for females. In particular, the empirical Fréchet variances of the distance
profiles, n−1 ∑n

i=1 d2
W(F̂Xi

, F̂⊕), of age-at-death distributions for females and males of dif-
ferent countries are 2.08 and 8.22, respectively, where F̂⊕ = argminω∈W

∑n
i=1 d2

W(F̂Xi
,ω)

http://www.mortality.org
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FIG. 12. Two-dimensional profile MDS (left) and object MDS (right) of the age-at-death distributions of females
(top) and males (bottom) in 2000 for 34 countries, where the objects are grouped into 10 groups and colored
according to the quantiles of their transport ranks.

is the empirical Fréchet mean of the distance profiles, indicating that male age-at-death is
especially sensitive to unfavorable country-specific factors such as the lingering effects of
societal upheaval in Eastern Europe.

7.4. Illustration with U.S. electricity generation data. Compositional data comprise an-
other type of data that do not lie in a vector space. Such data are commonly encountered
and consist of vectors of nonnegative elements that sum up to 1. Examples include geo-
chemical compositions and microbiome data. Various approaches to handle the nonlinearity
that is inherent in such data have been developed (Aitchison (1986), Filzmoser, Hron and
Templ (2019), Scealy and Welsh (2014)). We consider here the U.S. electricity generation
data, which are publicly available on the website of the U.S. Energy Information Adminis-
tration (http://www.eia.gov/electricity). The data consist of net generation of electricity from
different sources for each state. We considered the data for the year 2000. In preprocessing,
we excluded the “pumped storage” category due to errors in these data and then merged the

http://www.eia.gov/electricity
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other energy sources into three categories: Natural Gas, consisting of “natural gas” alone;
Other Fossil, consisting of “coal,” “petroleum” and “other gases”; Renewables and Nuclear,
combining the remaining sources “hydroelectric conventional,” “solar thermal and photo-
voltaic,” “geothermal,” “wind,” “wood and wood derived fuels,” “other biomass,” “nuclear”
and “other.” Hence, we have a sample of n = 50 observations {Xi}ni=1, each of which takes
values in a 2-simplex 2 = {x ∈ [0,1]3 : x�13 = 1}, where 13 = (1,1,1)�. Since the compo-
nentwise square root

√
x = (

√
x1,

√
x2,

√
x3)

� of an element x ∈ 2 lies in the unit sphere
S2, we adopted the geodesic metric on this sphere

(34) dS(x,y) = arccos
(√

x
�√

y
)

for x,y ∈ 2.

We then compared the proposed transport ranks (16) for each state with the angular Tukey
depths (ATDs, Liu and Singh (1992)) of {√Xi}ni=1. At first glance, the proposed transport
ranks and ATDs yield similar center-outward ordering of the 50 states for these data (Fig-
ure 13). Maryland emerges as the transport median and is also at the median in terms of ATDs.
On closer inspection, one finds some interesting discrepancies between transport ranks and
the ATDs, especially for the states that are either close to or far away from the center Mary-
land in terms of their outlyingness. The states near Maryland, as shown in orange and light
violet in the bottom panels of Figure 13, all have high transport ranks, while their ATDs vary
widely. In particular, Montana, with an electricity generation pattern very similar to that of
Maryland, has the lowest ATD level while it has a high transport rank. A subset of states that
are colored in turquoise and light violet in the bottom panels of Figure 13 have the lowest
ATDs among all states but have a much wider range of transport ranks. For example, Hawaii
and Delaware for which energy sources are similar to those of Maryland have high transport
ranks and low ATD levels. The overall conclusion is that transport ranks are better suited than
ATDs for studying the geometry of this data set and for quantifying outlyingness.

Networks as random objects are illustrated in another data application for New York City
taxi trips; details can be found in Section S.9 of the Supplementary Material.

7.5. Illustrations of the two-sample test.

7.5.1. Human mortality data. We illustrate the proposed two-sample test with the age-
at-death distributions from the Human Mortality Database as described in Section 7.3. The
countries we considered are Belarus, Bulgaria, Czechia, Estonia, Hungary, Latvia, Lithuania,
Poland, Russia, Slovakia and Ukraine, which are all Eastern European countries at the lowest
longevity levels. One question of interest is whether the age-at-death distributions of these
Eastern European countries changed after the dissolution of the Soviet Union.

To this end, we compared the age-at-death distributions in 1990 and the distributions in
1993 for these countries separately for females and males, utilizing the proposed test, as well
as the energy test (Székely and Rizzo (2004)) and the graph based test (Chen and Friedman
(2017)). The densities of these distributions are shown in Figure 14 and the test results are
summarized in Table 1, where the tests are implemented and referred to in the same way as
in the simulations in Section 6.3 and p-values less than 0.05 are highlighted in bold.

In Figure 14, it can be seen that the age-at-death densities of males in 1993 vary more
across the Eastern European countries than in 1990 while the variation of those for females
is more similar. While the proposed test does not find a significant difference between age-
at-death distributions for females in 1990 and 1993, the p-value of the proposed test for
males is below 0.05, which provides evidence that a systematic change occurred in the age-
at-death distributions for males in these Eastern European countries between 1990 and 1993.
In contrast, the energy test and the graph based test do not find significant differences at the
α = 0.05 significance level for either females or males.
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FIG. 13. Ternary plot of compositions of electricity generation in the year 2000 for the 50 states in the U.S.,
where the points are colored as per their grouping into 10 groups according to quantiles of transport ranks (top
left); the corresponding grouping based on angular Tukey depths (ATDs, top right); highlighted subsets that show
differences between transport ranks and ATDs (bottom left); and a scatterplot of transport ranks (16) versus ATDs
(bottom right), where the straight line shows the least squares fit (to provide perspective). In the bottom two panels,
a subset of states with similarly small ATDs but varying transport ranks is highlighted in turquoise, and another
subset with similarly high transport ranks but varying ATDs is highlighted in orange, where the intersection of
these two subsets is colored in light violet.

7.5.2. Functional connectivity networks based on fMRI data. Functional connectivity in
neuroimaging refers to temporal association of a neurophysiological measure obtained from
different regions in the brain (Friston et al. (1993)). Functional magnetic resonance imag-
ing (fMRI) techniques record time courses of blood oxygenation level dependent (BOLD)
signals, which are a proxy for neural activity in the brain (Lindquist (2008)). Specifically,
resting state fMRI (rs-fMRI) records signals when subjects are resting and not performing
an explicit task. Functional connectivity networks can be constructed across various brain re-
gions of interest (ROIs) by applying a threshold to certain measures of temporal association
for each pair of ROIs that in an initial step are represented as symmetric correlation matrices.
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FIG. 14. Age-at-death distributions for females and males in the eleven Eastern European countries in 1990
(red) and 1993 (blue), all shown as density functions.

The rs-fMRI data in our analysis were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.usc.edu), including 400 clinically normal
(CN) subjects and 85 mild Alzheimer’s disease dementia (AD) subjects. For each subject,
we took only their first scan. Preprocessing of the BOLD signals was implemented fol-
lowing the standard procedures of head motion correction, slice-timing correction, coreg-
istration, normalization and spatial smoothing. Average signals of voxels within spheres
of diameter 8 mm centered at the seed voxels of each ROI were extracted, with linear
detrending and band-pass filtering to account for signal drift and global cerebral spinal
fluid and white matter signals, including only frequencies between 0.01 and 0.1 Hz. These
steps were performed in MATLAB using the Statistical Parametric Mapping (SPM12, http:
//www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit V1.8 (REST1.8,
http://restfmri.net/forum/?q=rest).

We considered the 264 ROIs of a brain-wide graph identified by Power et al. (2011) and
use temporal Pearson correlations (PCs) (Biswal et al. (1995)) as the measure of temporal cor-
relation between pairs of ROIs, a common approach in fMRI studies. Functional connectivity
networks were then obtained as adjacency matrices by imposing an absolute threshold 0.25
on the 264 × 264 matrices of temporal PCs, where entries less than 0.25 are replaced with
zeros and diagonal entries are set to zero. As distance between two functional connectivity
networks, we chose the Frobenius metric between the adjacency matrices.

We then employed the proposed test, the energy test and the graph based test to compare
the functional connectivity networks of CN subjects and AD subjects. Prior to performing
the tests, we subsampled the CN and AD subjects such that the age distributions of these two
groups of subjects are similar. The results are presented in Table 2. The proposed test and

TABLE 1
p-values for testing whether the age-at-death distributions in 1990 and the distributions in 1993 have the same

distribution, for females and males, respectively

Test Females Males

energy 0.326 0.089
graph 0.107 0.055
DP 0.159 0.044

http://adni.loni.usc.edu
http://www.fil.ion.ucl.ac.uk/spm
http://restfmri.net/forum/?q=rest
http://www.fil.ion.ucl.ac.uk/spm
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TABLE 2
p-values for testing whether the functional connectivity networks of

CN subjects and AD subjects have the same distribution

Test p-value

energy 0.003
graph 0.930
DP 0.034

the energy test have p-values below 0.05, providing evidence for a significant differences be-
tween the distributions of functional connectivity networks of CN subjects and AD subjects,
while the p-value of the graph based test is close to 1.

In a second analysis, we compared the functional connectivity networks of CN subjects for
(first) scans taken at various age groups, with their distribution across age groups summarized
in Table 3. Empirical power was obtained as the proportion of rejections at significance level
α = 0.05 based on 100 Monte Carlo runs, for each of a sequence of tests. For all tests, the
first sample consisted of functional connectivity networks of 80 subjects randomly sampled
from the 159 CN subjects with scans taken in the age interval [55,70). The second samples
were drawn from the remaining 320 CN subjects and consisted of functional connectivity
networks of subjects with scans taken in defined age intervals. For the first test, this age
interval was [55,70), for the second test it was [60,75), . . . , for the second-to-last test it was
[75,90) and for the last test it was [80,96). Since it is known that these networks change with
age, this sequence of tests provides an empirical power function for detecting the age-related
change. The empirical power results are presented in Figure 15, indicating that the proposed
test outperforms both the energy test and the graph based test.

8. Discussion and outlook.

8.1. Metric selection. To deploy the tools of metric statistics for a given space of data
objects, the choice of a metric is essential. For some data types such as Euclidean data, the
metric is usually preordained to be the geodesic, that is, the usual Euclidean metric, but even
in this simple special case there are still various choices; one could consider weighted metrics
that deemphasize or emphasize specific vector components. Similarly, for data on Rieman-
nian manifolds such as spheres, the geodesic metric is an inherent feature of the geometry
and, therefore, is the canonical choice. This applies also to compositional data if they are rep-
resented on the positive orthant of a unit sphere (Scealy and Welsh (2011)), as described in

TABLE 3
Age distribution at first scans for the CN subjects

Age interval # CN subjects

[55,60) 14
[60,65) 20
[65,70) 125
[70,75) 84
[75,80) 76
[80,85) 49
[85,90) 21
[90,95) 10
[95,96) 1
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FIG. 15. Power comparison for increasing age difference for two samples of functional connectivity net-
works of CN subjects, where the first samples consist of CN subjects with scans taken in the age inter-
val [55,70) years and the second samples consist of CN subjects with scans taken in the age intervals
[55,70), [60,75), . . . , [75,90), [80,96), respectively. For each Monte Carlo run, the first sample consists of 80
subjects which are randomly sampled from the 159 CN subjects with ages in [55,70), and from among the re-
maining 320 CN subjects, the second sample consists of the subjects with scans taken in the corresponding age
interval. The dashed grey line denotes the significance level 0.05.

Section 7.4; an alternative selection for compositional data is the Aitchison metric (Aitchison
(1986)). Both choices have specific advantages and disadvantages (Scealy and Welsh (2014)),
notably the Aitchison metric requires the compositional components to be positive (otherwise
requiring a numerical fudge), which is not satisfied for the U.S. energy generation data that
we study in Section 7.4.

The metric selection problem is more complex for other data objects such as distributions,
where a large number of metrics have been proposed and popular choices in the context of
random objects include the 2-Wasserstein metric (1). The Wasserstein metric has been shown
to work well for one-dimensional distributions in distributional data analysis (Panaretos and
Zemel (2020), Petersen, Zhang and Kokoszka (2022)) and various applied scenarios (Bolstad
et al. (2003)), but poses thorny theoretical and computational problems for multivariate dis-
tributions. This incentivizes the study of alternative metrics such as the sliced Wasserstein
metric (Chen and Müller (2023), Kolouri et al. (2019), Kolouri, Zou and Rohde (2016)) and
the Fisher–Rao metric (Dai (2022)). For the space of symmetric positive matrices that play
an important role for applications such as fMRI and DTI brain imaging, one can choose
among a large class of metrics, ranging from the Frobenius metric to power metrics (Pigoli
et al. (2014)), the recently proposed Cholesky metric (Lin (2019)) and metrics that reflect the
geometry of eigenvectors (Jung, Schwartzman and Groisser (2015)).

While it is clearly important, the metric selection problem in a statistical framework has
been largely neglected. If one has a class of metrics that is indexed by a parameter, a data-
based selection criterion to find the best metric within the class may lead to consistent data-
based metric selection for a specific target criterion; an example is metric selection for the
family of power metrics for symmetric positive matrices (Petersen and Müller (2016b)). Ab-
sent a statistical framework for metric selection, a basic criterion is that the metric should
be of strong negative type (9), which then implies that distance profiles characterize the un-
derlying distribution. This property is satisfied for the metrics that we have discussed in ex-
amples, simulations and data analysis. We refer to Section 3 of Lyons (2013) for a detailed
discussion of examples and counterexamples of metrics that are of (strong) negative type.
Specifically, the space of one-dimensional distributions with finite second moments endowed
with the 2-Wasserstein metric in equation (1), the space of multivariate distributions with
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L2 metric between corresponding cdfs, the space of network adjacency matrices with the
Frobenius metric, and spheres with the geodesic metric are of strong negative type, while
Grassmannian manifolds and cylinders with their geodesic metrics are not (Feragen, Lauze
and Hauberg (2015), Venet (2019)).

Other criteria for metric selection include feasibility and ease of implementation (e.g., the
Fisher–Rao metric can be easily deployed irrespective of the dimensionality of distributions)
and matching of metric proximity with perceived or known similarity. A good metric should
also facilitate meaningful interpretation of the results obtained when deploying the tools of
metric statistics and entail sensible inference, so that detected differences between groups
are indeed relevant. In some spaces, feature preservation when transitioning from one data
object to another along connecting geodesics that are determined by the metric is often de-
sirable. This may include preservation of shape features, for example, unimodality in the
case of distributions, which is a forte of the Wasserstein metric, or avoidance of the swelling
effect in the case of symmetric positive definite matrices as provided, for example, by the
Cholesky metric (Lin (2019)). A metric in the space of distributions that complements the
given metric in the object space is utilized in the space of distance profiles, which corre-
spond to one-dimensional distributions. In our approach, we use the 2-Wasserstein metric
and exploit its connection with optimal transports; other metrics could be explored as well.
An important property of the proposed distance profiles is that in metric spaces of (strong)
negative type they characterize the underlying probability measure P , which guarantees that
the proposed test attains asymptotic power against any alternative Q �= P , and any alterna-
tive metric would need to match this property. Another obvious extension to consider is to
use weighted transports in the definition of the distance profiles, where one could give more
weight to the transported mass situated closer to u = 0.

8.2. Outlook and future research. Distance profiles and their metric lead to a new type
of MDS for random objects, providing a representation of data objects that complements
the more standard MDS representations based on the original metric in the object space, as
exemplified in Section 7.3. The resulting visualization proved to be useful and interpretable
in the examples we studied. But this is only a small start and visualization of random objects
remains a widely open topic.

As we demonstrate in the numerical experiments in Section 6.3, in various scenarios the
distance profile based test outperforms the energy test in terms of power. This is likely due to
the fact that profile distances provide a more fine tuned assessment of the underlying measure
P than means do, where energy tests are based on the latter. In our experiments, the profile
based tests are less powerful than the energy test when the alternatives reflect mean shifts
but more powerful for alternatives based on scale changes and also when heavy tails are
involved. Further investigation for this phenomenon as well as potential improvements and
modifications of the proposed test, for example, by judicious choice of the weights in (24),
will be left for future research.

The proposed transport ranks can also be utilized to arrive at a new measure of object
depth, complementing recent developments that extend classical notions of depth from Eu-
clidean data to random objects (Cholaquidis, Fraiman and Moreno (2023), Dai and Lopez-
Pintado (2023), Geenens, Nieto-Reyes and Francisci (2023)). Exploring these connections is
a topic for future research. The properties of the proposed transport quantiles also deserve
further study in view of the importance and challenges of defining quantiles in metric spaces.
Specifically, rates and especially optimal rates of convergence for transport medians, trans-
port quantiles and other tools of metric statistics will require future research efforts.

While we have utilized optimal transports of distance profiles to obtain transport ranks and
transport quantiles, the concept of transports can be extended to objects in uniquely geodesic
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spaces (Zhu and Müller (2023b)) and can then be used as a general modeling tool. Other
recent developments include more sophisticated representations of random objects in repro-
ducing kernel Hilbert spaces (Bhattacharjee, Li and Xue (2023)). These and similar devel-
opments are expected to provide valuable new tools for the nascent field of metric statistics.
For random objects, essentially all relevant statistical methods for Euclidean data need to
be redesigned with new theoretical justifications. Examples include deep learning that could
be applied for Fréchet regression when the predictors are high-dimensional and principal
component analysis for random objects, where at this point there is no general theoretically
supported method. These are just a few of the many challenging open problems for future
exploration.
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