Probability

Def1: Randomness - the outcome of an action such as rolling a die cannot be predicted with certainty

Def2: Random experiment - an experiment where several outcomes may be observed but it is not possible to predict which one it will be with certainty

Def3: Probability - for a particular outcome is the proportion of time that an outcome would occur in a long run of repetitions of a random experiment

Def4: Trial - a repetition of a random experiment

Def5: Independence - trials are independent if the outcome of one trial does not depend on the outcome of another trial
Ex1: Flip a fair coin 10,000 times. The possible outcomes are heads \(H \) and tails \(T \). We cannot predict at each flip which it will be. The probability of heads is \(P(H) = 0.5 \) on each flip. Heads should occur as often as tails, so we expect half the time to see heads and half the time to see tails.

Def6: *Objective Probability* - the probability of an outcome depends on observed frequencies of outcomes of the same type over many repetitions of a random experiment.

Def7: *Subjective Probability* - the probability of an outcome depends rather than data.

Def8: *Sample Space* - collection of all possible types of outcome of a random experiment.
Def9: *Equally Likely Outcomes* - have the same probability of occurring.

Fact: If all outcomes of a random experiment are equally likely then the probability of any particular outcome O is

$$P(O) = \frac{1}{\text{number of all different outcomes}}$$

Def10: *Event* - is a collection of outcomes from a random experiment.

Fact: For a general event A consisting of equally likely outcomes, the probability of A is

$$P(A) = \frac{\text{number of outcomes in } A}{\text{number of all different outcomes}}$$
Note: the above calculations are for equally likely outcomes, only some experiments have equally likely outcomes.

Ex2 Flip two coins;
(a) Sample space $S = \{HH, HT, TH, TT\}$
(b) All four outcomes are equally likely. Therefore

$$P(HH) = P(HT) = P(TH) = P(TT) = .25$$

Def11: Complement A^c of an event A - all outcomes in S that are not in A.

Def12: Union, $\{A \cup B\}$, of events A and B - all outcomes in S that are in A or in B or both.

Def13: Intersection, $\{A \cap B\}$, of events A and B - all outcomes in S that are in both A and B.
Def14: Disjoint events A and B - have no outcomes in common, A and B are also said to be mutually exclusive.

Ex3 Roll a fair die; $S = \{1, 2, 3, 4, 5, 6\}$;
 (a) $A = \{\text{even numbers}\} = \{2, 4, 6\}$;
 (b) $B = \{\text{numbers less than 4}\} = \{1, 2, 3\}$
 (c) $C = \{\text{odd numbers greater than 2}\} = \{3, 5\}$

Then

$$A^c = \{\text{all odd numbers}\} = \{1, 3, 5\}$$

$$A \cup B = \{\text{all even numbers or numbers less than 4}\}$$
 $$= \{1, 2, 3, 4, 6\}$$

$$A \cap B = \{\text{all even numbers less than 4}\} = \{2\}$$

$$A \cap C = \{2, 4, 6\} \cap \{3, 5\}$$
 $$= \{\emptyset\}$$
Probability Rules:

1) *Complement rule*

\[P(A^c) = 1 - P(A) \]

2) *Additive rule for unions A, B*

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

3) *Multiplication rule for independent events A, B*

\[P(A \cap B) = P(A) \cdot P(B) \]

4) *Probability for disjoint events A, B*

\[P(A \cap B) = P(\phi) = 0 \]
Conditional Probability

The conditional probability of an event A given another event B is defined as

\[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \]

Note: this formula gives us a way to calculate the probability of an intersection when A and B are not independent.

Fact: Multiplication rule for the intersection of events A and B

\[P(A \cap B) =^1 P(A \mid B) \cdot P(B) =^2 P(B \mid A) \cdot P(A) \]
1 You would use this form if $P(A \mid B)$ and $P(B)$ are easily calculated or known already

2 You would use this form if $P(B \mid A)$ and $P(A)$ are easily calculated or known already

Fact: If A and B are independent then

(1) $P(A \mid B) = P(A)$

(2) $P(B \mid A) = P(B)$

(3) $P(A \mid B) \cdot P(B) = P(A) \cdot P(B)$

(4) $P(B \mid A) \cdot P(A) = P(B) \cdot P(A)$

and therefore, for independent events

$$P(A \cap B) = P(A) \cdot P(B)$$