Problem

- Collaborative Ranking
 - Recommender system problem
 - Focus on ranking of items rather than ratings in the model
 - Performance measured by ranking order of top k items for each user
- State-of-arts are using pairwise loss (such as BPR, and Primal-CR++).
- **But pairwise loss is not the only ranking loss.**
- We will show a new listwise loss works better than pairwise loss in collaborative ranking with implicit feedback.

STOCHASTIC QUEUING (SQ)

We denote the set of valid permutations as $\Pi \subseteq S(R, \Omega)$, where Ω is the set of all pairs (i, j) such that $R_{i,j}$ is observed.

Model

- Permutation probability for a single user’s top k ranked items:
 \[
 P_s(k, \bar{m}) (\pi) = \prod_{j=1}^{m} \phi(s_{\pi_j}),
 \]
 where π is a particular permutation (or ordering) of the m items, s are underlying true scores for all items, and ϕ is some increasing function.
- Can easily be extended to multiple users even with a lot of ties (e.g. 0/1 implicit feedback data).
- Minimize the negative log-likelihood:
 \[
 \min_{\bar{X} \in \mathcal{X}} - \log \sum_{\Pi \in S(R, \Omega)} P_s(k, \bar{m}) (\Pi).
 \]
- The non-convex version can easily be optimized using SGD:
 \[
 \sum_{\Pi \in S(R, \Omega)} - \frac{m}{\sum_{\Pi \in S(R, \Omega)}} \sum_{i=1}^{m} \sum_{j=1}^{m} \phi(u_i^T v_{\pi_j}) + \frac{\lambda}{2} (\|U\|_F^2 + \|V\|_F^2).
 \]
 $g = \log \phi$ is the sigmoid function.
- For implicit feedback data, we sample \bar{m} unobserved entries uniformly and append to the back of the list $\rightarrow \bar{m} = (1 + \rho)\tilde{m}$ (For each user (row of R), assume there are \tilde{m} 1’s).

Theory

The problem of the constrained form

\[
\hat{X} := \arg \min - \log P_X (\Pi) \text{ such that } X \in \mathcal{X}.
\] (1)

The personalized setting:

\[
X_{ij} = u_i^T v_j, u_i, v_j \in \mathbb{R}^r, \|U\|_F \leq c_u, \|V\|_F \leq c_v.
\] (2)

Corollary 1. Consider the minimizer, \hat{X}, to the constrained optimization, (1). Suppose that there exists a $X^* \in \mathcal{X}$ such that $\Pi_i \sim P_{X_i}$ independently for all $i = 1, \ldots, n$. If $\log \phi$ is 1-Lipschitz, then in the personalized ranking setting, (2), the KL-divergence between the estimate and the truth is bounded:

\[
D(X^*, \hat{X}) = O_p \left(\frac{\sqrt{m \log m}}{n} \right).
\]

Conclusion

- We propose a new collaborative filtering algorithm using listwise loss.
- Our algorithm is faster and more accurate than the state-of-the-art methods on implicit feedback data.
- We provide a theoretical framework for analyzing listwise methods.

Source Code

- Julia codes: https://github.com/wuliwei9278/SQL-Rank