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SUPPLEMENTARY MATERIAL

By JiMING JIANG
University of California, Davis

Throughout this supplementary material, the paper, “The Sub-
set Argument and Consistency of MLE in GLMM: Answer to An
Open Problem and Beyond”, is referred to as Jiang2012. Equation
numbers without referring to Jiang2012 conrespond to those in this
supplementary material.

1. Proof of (7) in Jiang2012. Consider the bivariate function

P po+z 1—p l1—po—z
v = (2) (o)
9(p:) Po 1—po

Let 6 = po(p +€) — po > 0. It can be shown that, provided that |z| < &,
then g(p,xz) is decreasing with p for p > pg + d¢; hence, we have g(p,z) <
9(po+d¢,z) if p > po+ d¢ and |z| < Je. On the other hand, it is easy to show
that g(po + d¢,0) < 1; thus, by continuity, there is0 < § < deand 0 <y < 1
such that g(po + d¢, ) < 7, if |z| < 6.

Next, we divide the interval (u+¢, K] by Aj = p+e+(j/J)(K—p—e€),j =
1,...,J, where J = [pmn/mAn]+1and p = —2(K —p—¢€)/logy > 0. Then,
we have p; = po(Aj) > po(p+e€) = po+Je, implying g(p;, z) < g(po+de,z) <
v, 1 <j < J,if |z| < 4. It follows that, on Aj, we have

px; (Y))
pu(ypy)

(1)

= {g(pj, A)}™"" <A™\ 1< <

For any A € (u+e€, K], thereis 1 < j < J such that [A\—=X;| < (K—p—e)/J.
Then, by the Taylor expansion, and proof of Theorem 2 in Jiang2012, we
have log px(yp1}, Yjg) — log pa; (Yp1)» ¥j2)) < mn(K — p—€)/J. It follows that

Ay Yp) { (K - - 6) } x; () vp)
sup ——— < exp{mn{———— max ——————.
Ae(u+e,K] p#(y[l]ay[Q]) J 1<5<J p,u(y[l]ay[2])
Thus, by the subsect argument of Jiang2012 and (1), we have, on Ay,

Pu{ sup oAy, Y2) S 1‘ y[u}
re(ute, K] Pu(Yp) Yi2)

1
imsart-aos ver. 2011/12/06 file: glmmmle.suppl.tex date: November 9, 2012



2 JIANG

e > exp {nn (F725))
> ex -mn| ——
l1<J<J pu [1]>Y[2)) P J Y
1) > exp { o (1) Yo
———— >expy—mn| —— Y
l (y[ 11 Y2)) J .

K—p—e\) < P, (Y5 Vi)
P mn(+>}zE“{M v

= Py Yi2)

IN

IN
M“

IA
@
»

K-p—e¢ ) } XJ: P (ypp) [see (2) of Jiang2012]
T = pulyp)
< exp {mn (S =5) gy
¢ eofmrn et

if m An > Ny for some Ny > 1, using the definition of J. Therefore, there
is N1 > Ny such that, when m A n > Ni, we have

Pu{ sup (Y1), Y1) o1
re(ure, K] PuYp) Yi2)

on Aj; (note that log~y is negative), or, equivalently,

Pu{ sup (Y Yi2) > 1]Al <4y
re(ute, K] Pu¥i) Y2)

@) < e {2 man 1y,

everywhere. Now, for any 0 < n < 1, there is No > N; such that, when m A
n > Ny, we have P, (|A| > 6) < n/2. Also, let N3 = [4(logn—log2)/log~]+
1. By taking expectation on both sides of (2), we have, when m An > N3,

1
Pu{ sup IM >1,|A| < 5} < exp{ﬂ(m/\n)} <n/2.
re(ute, K] Pu(Y1) Yi2)) 4

Thus, when m An > Ny V N3, we have

Pu{ sup (Y1), Vi) S 1} <
Ae(ute, K] Pu(Y[1) Yp2))

A similar result, with (p + €, K] replaced by [—K, 4 — €), can be proved.
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CONSISTENCY OF MLE IN GLMM 3

2. Proof of Theorem 3 of Jiang2012. For any § € ©, 0 # 0y, by A2
of Jiang2012, there is 1 < a < b such that

®) lim sup L Z Eg, [1°g {M}

< 0.
N—oo ma] 1 peo(ya,j)

Let y[1) denote the combined vector of y,,5,1 < j < myg, and ypy) the vector
of the rest of the y’s. By the subset argument [see (2) of Jiang2012], we have

Po (Y1)
(4) Poo{poo (Y1), ¥121) < polypys vi2)lypyy < - (y[[1]])'
On the other hand, we have
1 po(yp)) } {pa Yai) }
—log ¢ ———= = — lo :
M { oo (y[1]) ]Zl P60 (Ya,)
1 & pﬂ(ya j

5 = = S Ey |log{ £8Yai) A,
( ) Mg le o [ & {pﬂo(ya,j)} Z J

where Aj = 10g{pg(Ya.;)/Poo (Ya,j)} — By [log{pe(Ya,;)/pa; (ya,j)}]- By A3 of
Jiang2012, the second term on the right side of (5) is op(1). Thus, combined

with (3), there is a constant A > 0 such that, with probability tending to
one, we have m ! log{pa(yp11)/Peo (y111)} < —A; hence, by (4), we have

(6) Poo{poo Wy vp2) < Polyppyp)lypt < e e

The arguments have shown that the left side of (6) is Op(e~*™). Thus, by
A1 of Jiang2012 and the dominated convergence theorem, we have

(1) Poo{pao (wpipr v) < polypy yp)} =0 = Poy(6#£0) — 1,

as N — oo. Because (7) holds for every 8 € © \ {6y}, and © is finite, the
proof is complete.

3. Some details of the proof of Theorem 4 of Jiang2012. First
we establish (14) of Jiang2012. It is easy to show that |D| < 2dK? 1.
Furthermore, for any 6 € 0C. N Oy, there is a point 6, € D such that
|0, — 6| <2¢/K,1 <c<d. Thus, by the Taylor expansion, there is a point
6 that lies between 6 and 0; such that

d

1o} 2deB
Z { a0, logPG(y)L:é} (00 - Ol,c)

K bl

|log{pe(y)} — log{pg, (v)}| =

<
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4 JIANG

implying py(y) < exp(2deB/K)py, (y) [B is the left side of (9) in Jiang2012].
It follows that supyesc.ney , Po(y) < exp(2deB/K) maxgep py(y); hence

Py, {pao(y)< sup pe(y)}

fcaC. ﬂ@N a

< Poy {ou () <o (57 ) maxply) |

0eD

2deB
< Py, {eXP <7> > 2} + Py, {Peo(y) < leeagpe(y)} :

Next, we show that Py, {pg,(y) < 2maxgep ps(y)|yp)} = op(1). By the
subset inequality, that is, (15) of Jiang2012, we have

Py, {p00 (y) < 2%16&5(1)9@)‘ y[l]} < > Py, {p90 () < 2pa(y)| y[l]}
0D

po(yp])
o< Poo (Y1)

(8)

We now define a new collection of points. Let L = [sa}vK] + 1. Let G be
the largest integer such that GL < K. Then, we have G < s, . For any
g =(91,---,94), where g1, ..., gq are integers such that 0 < g. <G —1,1<
¢ < d, select a point 04 from the subset {6 : Oy — € + 2¢g.L/K < 0. <
Ooc —€+2¢e(9c +1)L/K,1 < ¢ < d} NOC: N On g, if the latter is not empty;
otherwise, do not select. Let D be the collection of all such points selected.
Similarly, we have |D;| < 2dG%! < 2dsd]\} Furthermore, for any 6 € D,
there is a () € D1 such that |0, — 0(y) .| < 2¢L/K,1 < ¢ <d. Thus, by the

Taylor expansion, there is a 6 that hes between 6 and 6,y such that

log{po(y)} — log{pa,, ()} = 3. log{po(vas)} — 3 log{ps,, (vas)}

=1 i=1
d mg

= 21239 log{pe ya,j)}{g 9(9 o}
c=1j=1

= lecz_:a—elog{pa ya,g)}{g 0(9 e}

It is then easy to derive that

(9) max Po(yy) < exp (—QdeLBam ) max pa(y[l])
9€D po,(yp) — ’
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CONSISTENCY OF MLE IN GLMM )

where By, is the left side of (10) in Jiang2012.
Next, by B2 of Jiang2012, there are constant A € (0,00) and positive
integer N7 such that

(10) sup min 1 %Eg [log {7170(2/11',]) }
0

0€0,e<|0—0p|< M 1<a'<b My = pao(ya',g)

S _Aa

if N > N;. For any 6 € D1 C 0C. N On 4, we have

1 - Po(Yayg) || _
m—Zan log { =212 3| = Sy 4(f) = min Sy () < =X,
a ]:1

p90(yaJ) 1<a’<b

by the definition of dC¢, ©y, and (10). Thus, by (5), we have

(11) ilog{p"(y[”)} < —)\—I—max—ZA

Mq oo (Y1) 6€D1 M =

if N > Ny, where A;(0) is the A; below (5). Because (11) holds for any

0 € D,, we have
A— — > Ay
{ gg%ﬁrﬂhLEZ: }]

if N > N;. Combining (8), (9) and (12), we have, for N > Ny,

(12)  max po(yp))

< exp
9€ D1 pg, (Y1)

Py, {poo (y) < 21;16215(1?9(19)‘ ym}

2deL
d—1
(13) < 4dK® “exp [—ma{/\— e gel%)fm_a E Aj( }

Let én = 2deLBo/K, ny = maxgep, m; ' 372 Aj(6). By (13), we have

Py, {pao (y) < 2maxpy(y) y[1]}
= P90{' T ‘y[l]}1(§N>)\/4 orny >A/4) T Pao{' T |y[1]}1(§N§A/4,nN§,\/4)

_ A
(14) < Lien>a/a) + Loy >a/e) + 4dK 1 exp <_§ma> ,

if N > Nj. It remains to evaluate the three terms on the right side of (14).
The last term is bounded by

4d(2e‘5m“)d_1 exp {—%ma} = 2% dexp [—ma {% —(d - 1)5}] ,
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6 JIANG

which goes to zero if (d —1)0 < A\/2. Next, it is easy to show that s, v /K <
exp[— ma{é—log(sa ~N)/mq}] = 0, by B3 of Jiang2012 Thus, there is Ny > 1
such that s, MK > 1, implying L/K < 2s, N, if N > Nj. It follows that
Env < 2de(B a/Sa ~) = op(1l), by B3 of J1ang2012 It follows that the first

term on the right side of (14) £ 0, hence is op(1). Also, we have
fe D,

B
e sio)

- Z ZV&I‘@O lk)g { 26(Ya,j) H

geDl a] 1 Do (Ya,j)

2d
3—2 x the left side of (11) of Jiang2012,

My

Py (”N>Z> < ZPQO{ ZA

VAN

because |D;| < 2dsi_]\} [see the note below (8)]. It follows, again, that the

1
second term on the right side of (14) L 0, hence is op(1). Therefore, we

have Py, {pg, (y) < 2maxgep py(y)|y;} = op(1).
Next, we show (12) of Jiang2012. It then follows by the dominated con-

vergence theorem that

(15) Pun {poo) < 2as )} — 0.

In addition, we have

221;3 :2de<£) (?) <2de(§>eXP [—ma{‘s_%}]’

which is op(1) by B3 of Jiang2012. It follows that

(16) Py, {exp (2§B) > 2} = Py, {2d€B > log(2 )} — 0.

K
The result follows by combining (13), (14) of Jiang2012, and (15), (16).

4. Proof of Theorem 5 of Jiang2012. Let ¢ = (p — §)/2. For any
M > 0, define Jy = [V/dV (dMcnbg)] + 1. For any | = (l1,...,l) and
Jj = (j1,---,7a), where I, = 1,2,... and j. € {0,...,Jy — 1}, 1 < ¢ < d,
define r(I,5) = {w € R : . + je/In < we < le+ (je +1)/JIn,1 < ¢ <
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CONSISTENCY OF MLE IN GLMM 7

d}. Then, we can find a collection r(l,j),(l,j) € Ck such that Sy(k) C
Ua,jec,r(l,7) and [Ck| < (2Jn)%(k + 1)%, where d; = dl(g>1)- To see
this, note that this is clearly true when d = 1. If d > 1, then for any
w € S4(k), we must have |w.| < |w| < k+ 1,1 < ¢ < d. Therefore, Sy(k) C
U_ (k1) <le<k,0<je<Jn—1,1<c<d(l, ), and there are {2(k+1)Jn }% such c(l, 5)’s
in the union. [Note: It can be shown that, if d > 1, the number of ¢(l, j)
that are entirely inside Sq(k) is in the order of (kJy)¢; thus, although the
upper bound {2(k + 1)Jx}? may not be very accurate, at least it gets the
order right, which is all that matters.| For each (I,j) € Cf, select a point
0(l,7) € c(l,7) N O N Sy(k), if the latter is not empty; otherwise, do not
select. Let Dy be the collection of all such points. Then, we have |Dy| <
(2Jx)%(k + 1)%. For any 8 € © N Sy(k), there is 6(I,j) € Dy such that
|0 — 0(1,7)c] <1/Jn,1 < ¢ < d. Thus, by the Taylor expansion and C1 of
Jiang2012, it is easy to show that logpg(y) —logpy( ;) (y) < 1, if (v < M.
Note that the convexity of © implies that (1—%)0;+t6, € ONSy[k—1,k+2),
if 0; € ©NS4(k),7 =1,2 and (01 — 02| < 1/Jn,1 < c < d. It follows that
SUPgcons, (k) Po(¥) < emaxpep, po(y), if (v < M. Therefore, we have

P90 {p9o(y) < sup p@(y)aCN < Ma NN < M, Ay < 6}
9cONSy(k)

(17) < Py, {peo(’y) < egé%):po(y),mv < M,An < 6},

where nn, An are defined in the sequel.
Next, define y[;] as the combined vector of y(1), ..., Y(my), and Y as the
rest of the y data. By the subset argument of Jiang2012, we have

Puy {moo(0) < x|y} < 3 Poolon(@) < eno(v)ly)
€D 0eDy,

Po(yp))

(18)

For every 6 € Dy, we have log{ps(y[17)/pe, (y11))} = 2721 log{pje(y())} —
Z;-”:J‘i log{pj,ao(y(j))} = I — I. Let t € Tn be the one that satisfies (ii) of
C2 in Jiang2012. Define Jn s = {1 < j < mp : y(j) = s}, 8 € Ty. Then, we
have It < 3 jc 7y, 108{pjo(t)} < —vk|Ini| < —ve minsery [In,s|- Also, for
any s € Ty, we have | Ty 5| = mn[my' P! D)oo (8)+my 25 Ajs], where
Ajs =1y =5} —Pjoo(s). Let Ay = my' maxiery | 27 Ajit|. Then, by (iii)
of C2 in Jiang2012, we have |Jn,s| > mn(p — €), for every s € Ty, hence
I < —(p— €)mng, if Ay < €. On the other hand, we have —I, < myny,
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8 JIANG

where 7y = my' E;n:Nl [log{p;e,(y(j))}|- Thus, if ny < M and Ax < ¢, we
have log{py(y11)/pa, (Y1)} < —(p — e)ymnye + Mmy = —mn{(p — €)% —
M} < —mpy(p — 2€)y, = —dmnyy if k is large, say, k > K; for some K.
Note that both ny and Ay are F(yp;)) measurable. Thus, we have, by (18),

Py, {pao(y) <emaxpy(y),nv < M,An <€
6eDy,

y[l]}

= Py, {p90(y) <e maxpg(y)‘ y[l]} Ly <M,An<e)
9Dy,

po(y))

oo, Poo ()
e| Dy eI e

(M) cd k4 bde=0mn e

IN

(nn<M,AN<e)

IA A

(19)
where ¢(M) = 2% e{4(dM + +/d)}*. Combining (17) and (19), we have

Pg, {peo(y) < sup  pa(y),Cn Vin < M,Ayx < e}
0cONSy(k)

(20) < (M) kBbie MmN,
As (20) holds for every k > K1, we have

Po,{po, (v) < po(y) for some 6 € © with |6] > KV K1}

Py, <16, (y) < sup pg(y) for some k > KV K;
0cONSy(k)

Po,(Cnv V iy > M) + Py (Ax > )

AN

VAN

+Pg,

9cONnS, (k)
Py, (Cn Vv > M) + Py (An > ¢)

o0
+ D Py, {peo(y) < sup  py(y),Cn Vi < M, Ay < e}
k=KVK; 0conS (k)

IA

Uz kvEK, {poo (y) < sup  po(y),(nVrn < M,An <e

}

00
< Pao(gN VN > M) + PHO(AN > e) + C(M)C(Iiv Z kdlbge_JmN'Yk

k=KVK;
o

< Py(Cw Vrny > M) + Py, (Ax > €) + c(M)ck > Edipde0mak,
k=K

It is then straightforward to argue that, as N — oo,

(21) Py, {pa,(v) < ps(y) for some § € © with || > KV K;} — 0.
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CONSISTENCY OF MLE IN GLMM 9

On the other hand, by almost the same arguments as in the proof of
Theorem 4 of Jiang2012, it can be shown that, for any 0 < ¢ < M, we have

(22) Po,{pe,(v) < po(y) for some § € © withe < |6 —6y| < M} — 0,
as N — 0o. The result thus follows.

5. Some detailed derivations in Section 4 of Jiang2012. Regard-
ing identity (20) of Jiang2012, we have

py(1,1) = Ey{h(po + X)h(po +Y)}
o o
= Ey { /O Ls<h(uo+))ds /0 1(t5h(uo+Y))dt}
o0 o0
= By { /0 /0 1(s§h<uo+x),t3h<uo+y))dsdt}
o o
= [T [T P < o+ X0, 2 bl + Y)asa
o o0 B B
= /0 /0 P, {X > logit(s) — po,Y > logit(t) — po}dsdt.
Regarding the bounds for the partial derivatives, note that, because o2 >

0 and 7§ > 0, there is a neighborhood of 6y, N'(6), and constants A, B,C >
0 such that the following hold uniformly for 8 € N(6y):

m n
- (2)v(2) < on
lul+2y _ mo, " o
(24) {lul +2+1log(1+ ™) = BIN+ o5 + 55 < 0,
-1
log(4v/mo3) + m2 log(470?) + glog(27r7'2) + log(m)
A
n—1

log(4v/773) +

(26) < (i - B) N + (m + n)log(2),

log(4n72) + % log(2ma?) + log(n)

472
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10 JIANG

where N = 37; ;e s ¢ij, the total sample size. Note that the irreducibility of
S implies N > m V n. It can be shown that, in this case, we have

log{ps(y)} = ¢ — % logo” — %log 7?2
1 m n
(27)+10g/.../exp Sp+ 81+ 89 — 83 — 2—2 — Z’UJQ dudv,
=1 j=1

where 50 = 13 j)es Yigy With gij. = S0l Yigks $1 = S j)es Yir, Uis
82 = 2(i,5)eS YinjyVjs 83 = 2(ij)es Cij log(1 + e#+¥i¥%), du = [[;2; du;, and
dv = [[j—; dvj. Thus, we have the expression (3/0u)log{pe(y)} = I,./1,
where I = [ --- [ e"dudv, n being the expression inside the exponential on
the right side of (27), and

o Jof [ £ Bt o]

(3,5)€S k=1

[h(z) = e®/(1 + €®)]. It follows that |(0/0p)log{ps(y)}| < N. Similarly, we
have (8/802)log{pe(y)} = —m/20% + I,>/I, where

1 m

I, = ﬁ//<zlu,2> edudv
1=

= //Cl m ?gA-N)d“dU

+/ /Cl ST Z>AN)dudv
= 021'+

with ¢ = (3072 u; )e” WehaveO < I,2; < (A-N)I. Also, we have Y7 | u? >
(A/2N +(1/2) S w2, i S 02 > AN and o x(s-+ s + ;) — log(1+
el tuityi) < ( for any Yijk =0 or 1, u;, and v;. It follows that

S0+ 81+ S2 — S3
(28) = 3 > {vigelnuitv) —log(l+ et} <0

(i,5)€S k=1

always holds. Thus, we have, by (25),

< o) (5
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CONSISTENCY OF MLE IN GLMM 11

X exp (—%Z —%Z )dudv

= 4w m(4na?)m1)/2 (27r7'2)n/2 exp (—%N)
o
= exp{LS of (25) — RS of (25) + (m + n)log(2) — BN}

(29) S 2m+ne—BN

for € N(6y), where LS (RS) stands for left (right) side. On the other hand,
if |lu;| < 1,|vj] <1 for all 4, j, we have, by (24) and (28),

Inl < {lul +2+log(1 + e *)}N + =5 4 5 < BN,
hence I > e~ BN fil .. fil dudy = 2™"e~BN  Therefore, by (29), we have
0 < Iy < I forall @ € N(). It follows that |(8/00?)log{ps(y)}| <
(A+ C+1)N,0 € N(6y). By a similar argument, it can be shown that
(8/072) log{pe(y)}| < (A + C +1)N,0 € N(6o).

6. Checking assumptions (C1, C2 of Jiang2012. First consider the
open problem (Sections 1 and 2 of Jiang2012). Assumption C7 has, in fact,
already been verified in the previous section, with ¢y = mn, {(y = 1 and
by = 1. Note that this bound holds uniformly for all k.

As for assumption C2, let po denote the true p. Consider y(;) = y;j;,1 <
J < m A n. Then, log{p;.(y;;)} = y;jlogp + (1 — y;;)log(1 — p), where

= Eh(p + &), h(z) = /(1 + €%), and & ~ N(0,2). It follows that
Eyo|108{Puo (y55)} < |logpo| + [log(1 — po)|, where po is p with o = po.
Thus, (i) is satisfied.

Next, for any g such that £ < |p| < k+ 1, if &k < p < k+ 1, we
have log{pj,u( )} =log(l—p) <1—kif —(k+1) < p < —k, we have
log{p;.(1)} = logp < 1 — k (see the proof of Theorem 2 in Jiang2012).
Thus, (ii) is satisfied with v, = k — 1.

(iii) holds because (m A n)~* Z;”/\l” Djuo(t) = Puo(ynn =1¢) > 0,t =0,1.
(iv) holds because Ty = {0,1}, my = m An; and cy Y22, e~ 0mAn)(k=1) —
{1 — e 0mA =T exp{—(m An)(d — (m An)~'(logm + logn)} — 0 for any
§ > 0, provided that (m An) 'log(m Vv n) — 0.

As another example, we consider the example of Section 4 in Jiang2012.
It is more convenient to consider § = (u,0,7)" as the parameter vector.
The likelihood function can be expressed as pp(y) = E(eS), where ¢ =
Yigyes T {1 + o + i)y g — log(1 + et o4t} and &,1 < i <

<
W

imsart-aos ver. 2011/12/06 file: glmmmle.suppl.tex date: November 9, 2012



12 JIANG

m, nj,1 < j < n are independent N(0,1) random variables. Write | =
log py(y)- It is shown in Jiang2012 that |0l/0u| < N. Next, we have 0l/0c =

Yiyes Lpt B{e (Wijk — hi)&i}/E(eS), where hy; = h(p + 0&; + 77;) and
h(-) is defined above. Define
(30) ar = k+4+1log2+ 2{log(k +2) —logco},
where ¢y = \/2/me /18, For any 6 € © N S3[k — 1,k + 2), we have
E(l&]) = E{e*léill (g <ovman ) + B il (gm0 man }
< 2¢/NapE(el) + 24/2/me™Nak,

because e¢ < 1 (the conditional pmf of y given £,7), and E{l&llg>a)} =
f|w|>a lz|(2m) Y26 " 2dy < (27) Y2e 9/ [ |x|e * /tds = 2\/2]me ¥/
for any a > 0. On the other hand, it is easy to show that z — log(1 +
e’) > A0 —log2 and —log(l + ¢*) > —z V0 — log2. It follows that
(4 0& +70))yi i) — log(1+ el T8ty > — |y + o¢; + ;| — log 2. Thus, if
€] < (k+2)7! and |ny| < (k+2)~! for all ¢/, ', we have |u+ oy +1n;| <
k + 4 for all 4/, §', hence ¢ > —N(k + 4 + log 2). It follows that

E(ef) E{eL(j¢, [<(k+2)-1 1<t <mfnys[<(k+2)~1 1<j<n) }

>
> e—N(k+4+log2)[P{|§1| < (k) + 2)—1}]m+n
> g N(k+4log 2){Co(k +2)"1ymin,

where ¢y is defined below (30). It is then easy to show that
|E{e (yij — hij)&i}|
E(eS)
2
2v/Nay + 2\ﬁ
™

x exp (N [k + 4+ log2 + 2{log(k + 2) —logco} — ag))

2
= 2V Nog + 24/ =

T
< ¢V NEk

for some constant ¢ > 2, by (30). Therefore, we have |0l/0c| < cN3/?\/k.
The same upper bound can be obtained for |0l/97|, if § € ONSy[k—1,k+2).
Thus, assumption C1 holds with ey = N3/2, b, = vk, and (y = c.

As for assumption C2, consider the first subset considered in Jiang2012,
Section 4, that is, y;; = (Yiik)k=1,2 for (i,4) € Sz. It is shown that

o [ exp{yia(p +9E)}
po(Yisi) = {1+ exp(p+9€)}2|’

IA
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CONSISTENCY OF MLE IN GLMM 13
where y; ;. = Yii1 + Yii2, ¥ = Vo2 + 72, and £ ~ N(0,1). Define gy(s) =
E{esWtv) (1 4 ert¥€)=2} 5 = 0,1,2. Then,

2

Ego | log{pa, (vii)} = _ og{gay(s)}ge, (5),

s=0

which is a finite constant, hence (i) is satisfied.
For any 0 € © N S3(k), consider two cases. I: 1 > v/k/2. Then, we have

g9o(1) = \/2—7T (1 + entve)2® >y
+

B \/_2 ¥ e
T e

< e,u+u

= 1/ ¢ (1 + entu)?

- \/27r¢
2

S 0
wk

hence log{pg(1)} < —(1/2){log k + log(w/2)}. II: 4 < v/k/2. Then, we must
have k2 < p?+ % < p? + k/4, implying |u| > k+/1 — 1/4k. Therefore, there
are two subcases. II.1: g > kv/1 — 1/4k. Then, using the moment-generating
function of the standard normal distribution, we have

g9(0) < 672"E(e*2¢5)
e 21297

exp ( 2k\/%+ k)
ol (5 1)
{51

hence log{py(0)} < —{(2v/3 —1)/2}k. I11.2: u < —k+\/1 — 1/4k. By a similar
argument, it can be shown that log{py(2)} has the same upper bound. It is
easy to show that the upper bound under case I is larger than the upper
bound under case II for all & > 1. Therefore, (ii) is satisfied with v, =

(1/2){log k + log(m/2)}.

IA
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14 JIANG

Furthermore, (iii) holds with p = mins=0,1,2 gg,(s) > 0. (iv) holds because
Tnv =40,1,2}, my = m1 — oo (assumed in Section 4 of Jiang2012); and

o
c:;’v Z k?’b%e_‘sm”’“
k=K

1) T >
= 9/2 —— — (0m1-9)/2
(31) (mn)”/* exp { 2 log (2> ml} kE k .

It is easy to show that, for K = 4, the right side of (31) is bounded by

11

)
2 exp [—5 {1 + log (g)}ml —log(dmy — 11) + g(logm—i—logn) + 5|

which goes to zero for any § > 0, provided that m; " log(m V n) — 0.
7. Derivation of (21), (22) of Jiang2012. For any z € R%, we have,
using the expression above (21) of Jiang2012,
?I(0)r = z'I;1(0)z — 2'Ir2(0)x
) 0 2
= Ey (Ee l{w @logpa(y)} y[1]D

1 o2
(32) —Ey lx'Eg {p—mm(y) y[l]} 4

6(y)
The conditional expectation inside the second term on the right side of (32)

_ / 1 92 T pa(y[u,y[z])y(dy )
po(yp) ypz) | 90067 1P Po(y[1)) 2

1 &
~ polypy) 9696' / Po () Yiz))v (dypa)
1 &

m mpa (y[l])-

Thus, continuing with (32), we have

0
' I(0)z = Eg [Vara{iv'%logpa(y)‘y[l]}]

(33) wy ([wEa { S5 loem(v) ym}D L o(0)e.
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CONSISTENCY OF MLE IN GLMM 15

Once again, the conditional expectation inside the second term on the right
side of (33) is equal to

1 { ) } Po(y[) Y2)
G ) § ALY
/ oY1), Y2)) 39p0(y[1] Yz) o (Y1) (dyz)

= ey ) v(d
po(yp)) 00 Po(ypa)> yp2))v (dy2)
po(yp) 00" 71

Therefore, going back to (33), we have

(@) = 1z'Ey

0
Vary { 50 logpa(y)‘ Y H T
+:c'IS,1(6):C — a:'Is,g 0)x

ad
Vary { — logpg(y)‘ y[l]}] z + 2'I5(0)x.

o !
= TH 90

Because z is arbitrary, (22) of Jiang2012 must hold, which is a nonnegative
definite matrix.

8. Consistency of the DC MLE. Let Yy denote the data vector
under the sample size N. Lele et al. (2010, Corollary of Lemma A.2 in the

Appendix) shows that, under regularity conditions, we have o) 4, d4, as
K — o0, conditional on Yy, where §(1) has the posterior distribution (24)
of Jiang2012, and ¢, is the degenerate distribution at é, the MLE. Then
(e.g., Jiang 2010, p. 45), we have limsupg_, ., P{6) € C|Yn} < P(¢ € O)
for every closed set C, where § ~ ¢;. Thus, for any € > 0, by considering
C={0eR:|0—0| > e}, we have P{6) € C|Yn} = P{|0D) — 8| > ¢|Yn}
and P(¢ € C) = P(|¢ — 0] > €) = 0, implying P{|6) — 4| > ¢|Yn} — 0,
as K — oo. It then follows, by the dominated convergence theorem, that
P{l6®) — 9| > €} — 0, as K — oo, for any fixed €, n. In particular, there is
K(B,n) such that P{|§) — 4| > n 1} < (Bn) L, if K > K(B,n).

On the other hand, note that |§() — | > n~! implies that [§®) — | > n~?
for some 1 < b < B. Therefore, we have P{|0() 6] > n~1} < B P{|®) —
6| > n~1} = BP{|0) — 4| > n~1} <n~L, if K > K(B,n). Thus, for any e,
we have, for any n > 2/e, P{|00) =6y > ¢} < P{|00) =0 > n=1}+P(|6—6| >
€/2) < n '+ P(|6 — 6| > €/2), if n > 2/ and K > K(n,B). The result
then follows by the consistency (as n — oo) of 6.
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