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Limiting distributions of graph-based test
statistics on sparse and dense graphs
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Two-sample tests utilizing a similarity graph on observations are useful for high-dimensional and non-Euclidean
data due to their flexibility and good performance under a wide range of alternatives. Existing works mainly
focused on sparse graphs, such as graphs with the number of edges in the order of the number of observations,
and their asymptotic results imposed strong conditions on the graph that can easily be violated by commonly
constructed graphs they suggested. Moreover, the graph-based tests have better performance with denser graphs
under many settings. In this work, we establish the theoretical ground for graph-based tests with graphs ranging
from those recommended in current literature to much denser ones.
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1. Introduction

Given two random samples, X1, · · · , Xm
iid∼ FX,Y1, · · · , Yn

iid∼ FY , we consider the hypothesis testing prob-
lem H0 : FX = FY against Ha : FX � FY . This two-sample testing problem is a fundamental problem
in statistics and has been extensively studied for univariate and low-dimensional data. Nowadays, it is
common that observations are in high dimensions (Feigenson et al., 2014, Network et al., 2012, Zhang
et al., 2020), or non-Euclidean, such as networks (Beckmann et al., 2021, Biswal et al., 2010, Bull-
more and Sporns, 2009). In many of these applications, one has little knowledge on FX or FY , making
parametric tests unapproachable.

Nonparametric methods play important roles in solving two-sample testing problems and have a
long history. For univariate data, some common choices are the Kolmogorov–Smirnov test (Smirnov,
1939), the Wald–Wolfowitz runs test (Wald and Wolfowitz, 1940) and the Mann–Whitney rank-sum test
(Mann and Whitney, 1947). Since the middle of the 20th century, researchers have tried to extend these
methods to multivariate data (Bickel, 1968, Weiss, 1960). The first practical test that can be applied to
data in an arbitrary dimension or non-Euclidean data was proposed by Friedman and Rafsky (1979),
which is based on a similarity graph and is the start of graph-based tests. Over the years, graph-based
tests evolved a lot and showed good power for a variety of alternatives and different kinds of data (Chen,
Chen and Su, 2018, Chen and Friedman, 2017, Chen and Zhang, 2013, Chu and Chen, 2019, Henze and
Penrose, 1999, Rosenbaum, 2005, Schilling, 1986, Zhang and Chen, 2022). In the following, we give a
brief review of the graph-based tests and discuss their limitations.

1.1. A review of graph-based tests

Friedman and Rafsky (1979) proposed to pool all observations from both samples to construct the
minimum spanning tree (MST), which is a tree connecting all observations such that the sum of edge
lengths that are measured by the distance between two endpoints is minimized. They then count the
number of edges that connect observations from different samples and reject H0 when this count is
significantly small. The rationale is that when two samples are from the same distribution, they are
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well mixed and this count shall be relatively large, so a small count suggests separation of the two
samples and rejection of H0. We refer this test to be the original edge-count test (OET). This test is
not limited to the MST. Friedman and Rafsky (1979) also applied it to the K-MST1. Later, Schilling
(1986) and Henze (1988) applied it to the K-nearest neighbor graphs (K-NNG), and Rosenbaum (2005)
applied it to the cross-match graph. Zhang and Chen (2022) extended the test to accommodate data with
repeated observations.

Recently, Chen and Friedman (2017) noticed an issue of OET caused by the curse of dimension-
ality. They made use of a common pattern under moderate to high dimensions and proposed the
generalized edge-count test (GET), which exhibits substantial power improvements over OET under
a wide range of alternatives. Later, two more edge-count tests were proposed, the weighted edge-count
test (WET) (Chen, Chen and Su, 2018) and the max-type edge-count test (MET) (Chu and Chen, 2019).
WET addresses an issue of OET under unequal sample sizes, but it focuses on the locational alterna-
tives. MET performs similarly to GET while it has some advantages under change-point settings.

In the following, we express the four graph-based test statistics with rigorous notations. The two
samples X1, · · · , Xm and Y1, · · · , Yn, are pooled together and indexed by 1, · · · , N (N = m + n). Let G be
the set of all edges in the similarity graph, such as the K-MST. For an edge e ∈ G, let e+,e− be two
endpoints of the edge e, i.e. e = (e+,e−). Let gi be the group label of i-th observation with

gi =

{
1 if observation i is from sample X

2 if observation i is from sample Y,

and R1,R2 be the numbers of within-sample edges of sample X and sample Y, respectively, formally
defined as

Rj =
∑
e∈G

1{Je=j }, j = 1,2,

where 1{A} is the indicator function that takes value 1 if event A occurs and takes value 0 otherwise,
and

Je =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if ge+ � ge−

1 if ge+ = ge− = 1

2 if ge+ = ge− = 2.

Since no distributional assumption was made for FX and FY , we use the permutation null distribution,
which places probability 1/

(N
m

)
on each selection of m observations among pooled observations as

sample X. Let EP,VarP,CovP be the expectation, variance and covariance under the permutation null
distribution.

The four graph-based test statistics mentioned above can be expressed as follows:

1. OET: ZP
o =

(
R1 + R2 − EP(R1 + R2)

)
/
√

VarP(R1 + R2);

2. GET: S =
(
R1 − EP(R1) R2 − EP(R2)

)
Σ−1
R

(
R1 − EP(R1)
R2 − EP(R2)

)
, where ΣR = VarP(R1,R2)T ;

1A K-MST is the union of the 1st, · · · , K th MSTs, where the 1st MST is the MST and the kth (k > 1) MST is a tree connecting
all observations that minimizes the sum of distance across edges subject to the constraint that this tree does not contain any edge
in the 1st, · · · , k − 1th MST(s).
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3. WET: ZP
w =

(
Rw − EP(Rw))/

√
VarP(Rw), where Rw = R1(n − 1)/(N − 2) + R2(m − 1)/(N − 2);

4. MET: max{ZP
w,Z

P
diff}, where ZP

diff =
(
Rdiff − EP(Rdiff)

)
/
√

VarP(Rdiff) with Rdiff = R1 − R2.

The analytic formulas for the expectations and variances of R1 + R2, (R1,R2)T , Rw , Rdiff can be found
in Chen, Chen and Su (2018), Chen and Friedman (2017), Chu and Chen (2019). It was also shown in
Chu and Chen (2019) that the statistic S can be decomposed as

S = (ZP
w)2 + (ZP

diff)
2 (1)

and CovP(ZP
w,Z

P
diff) = 0.

1.2. Limitations of existing theorems on graph-based test statistics

Since the computation of p-values by drawing random permutations is time-consuming, approximated
p-values from the asymptotic null distributions of the graph-based test statistics are useful in practice.
Some existing theorems provide sufficient conditions for the validity of the asymptotic distributions.
Before stating these results, we first define some essential notations.

For each node i ∈ N � {1, · · · , N}, let Gi be the set of edges with one endpoint node i, nodeGi be
the set of nodes connected by Gi excluding node i, Gi,2 be the set of edges with at least one endpoint
in nodeGi , and nodeGi ,2 be the set of nodes connected by Gi,2 excluding node i. For each edge e =
(e+,e−) ∈ G, define Ae = Ge+ ∪ Ge− , Be =Ge+ ,2 ∪ Ge− ,2 and Ce be the set of edges that share at least
one common node with an edge in Be. We use | · | to denote the cardinarity of a set. Then |Gi | is the
degree of the node i. Figure 1 plots the quantities related to a node i and an edge e, respectively.

We also define d̃i = |Gi | − 2|G |/N to be the centered degree of node i and VG =
∑N

i=1 d̃2
i =∑N

i=1 |Gi |2 − 4|G |2/N that measures the variability of |Gi |’s. Besides, an = o(bn) or an ≺ bn means
that an is dominated by bn asymptotically, i.e. limn→∞ an/bn = 0, an � bn means that an is bounded
above by bn (up to a constant factor) asymptotically, and an = O(bn) or an � bn means that an is

Figure 1. The left panel is an illustration of notations related to a node i: Gi = {blue edges}, Gi,2 =
{sky blue edges} ∪ {blue edges}; j ∈ nodeGi

, k ∈ nodeGi ,2\nodeGi
, l � nodeGi ,2 , and the right panel is an il-

lustration of notations related to an edge e: Ae = {dark blue edges},Be\Ae = {sky blue edges}, Ce\Be = {light
steel blue edges}; f1 ∈ Ae, f2 ∈ Be\Ae, f3 ∈ Ce\Be, f4 �Ce. Both graphs are plotted by the ‘ggnet2’ function in R.
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Table 1. Major existing works on graph-based tests and their conditions on the graph for asymptotic distributions.

Test Statistic Graph conditions
max size
of possible graphs

Friedman and Rafsky (1979) Original MST with
∑N
i=1 |Gi |2 =O(N) N − 1

Schilling (1986) Original
K-NNG, K =O(1)
for low-dimensional data O(N)

Henze (1988) Original
K-NNG, K =O(1)
with bounded maximal indegrees O(N)

Rosenbaum (2005) Original cross-match graph N/2 or (N − 1)/2

Chen and Zhang (2015) Original
|G | =O(Nα), 0 < α < 1.125∑
e∈G |Ae | |Be | = o(N1.5(α∧1)) O(Nα), α < 1.125

Chen and Friedman (2017) Generalized
|G | =O(N)∑N
i=1 |Gi |2 =O(N)∑
e∈G |Ae | |Be | = o(N1.5)

O(N)

Chen, Chen and Su (2018) Weighted
|G | =O(Nα), 1 ≤ α < 1.25∑
e∈G |Ae | |Be | = o(N1.5α)∑
e∈G |Ae |2 = o(Nα+0.5)

O(Nα), α < 1.25

Chu and Chen (2019)
Generalized
Weighted
Max-type

|G | =O(Nα),1 ≤ α < 1.25∑
e∈G |Ae | |Be | = o(N1.5α)∑
e∈G |Ae |2 = o(Nα+0.5)

VG =O(
∑N
i=1 |Gi |2)

O(Nα), α < 1.25

∗For the conditions in Chen, Chen and Su (2018) and Chu and Chen (2019), the size of the graph is bounded
by the condition on |Ae |2:

∑
e∈G |Ae |2 = o(Nα+0.5) requires that α < 1.25.

bounded both above and below by bn asymptotically. We use a ∧ b for min{a,b}. For two sets S1 and
S2, S1\S2 is used for the set that contains elements in S1 but not in S2.

The major existing works that studied the asymptotic null distributions of the graph-based test statis-
tics are listed in Table 1. In general, these works put requirements on the graph such as the maximum
in-degree,

∑
|Gi |2,

∑
|Ae |2 and

∑
|Ae | |Be |. The conditions in Friedman and Rafsky (1979) are lim-

ited to the MST, while K-MST with K > 1 has a better performance in general (Chen and Friedman,
2017). For those that are more relaxed on the graph and data, Henze (1988) requires a bounded max-
imal in-degree in K-NNG, Chen and Friedman (2017) requires

∑
|Gi |2 to be of the same order as N ,

and Chen, Chen and Su (2018) and Chu and Chen (2019) provide the current weakest conditions that
require

∑
|Ae |2 = o(|G |

√
N) and

∑
|Ae | |Be | = o(|G |1.5). However, those conditions are often too strong

to hold under even simple scenarios. For example, we generate two samples with equal sample size
(m = n = N/2) from the 500-dimensional standard multivariate normal distribution, and construct the
5-MST and 5-NNG using the Euclidean distance. Figure 2 plots the maximum in-degree,

∑N
i=1 |Gi |2/N ,∑

|Ae |2/(|G |
√

N) and
∑
|Ae | |Be |/|G |1.5 with different N’s. We see that the conditions on them are

badly violated: the maximum in-degree goes up rather than bounded by a constant,
∑N

i=1 |Gi |2/N in-
creases with N rather than bounded by a constant, and

∑
e∈G |Ae |2/(|G |

√
N) and

∑
e∈G |Ae | |Be |/|G |1.5

stay at a large value (in hundreds) as N increases rather than o(1) as required by the conditions. If we
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Figure 2. Key quantities with respect to N . Top-left: the maximum in-degree in the 5-NNG; top-right: the ratio of∑N
i=1 |Gi |2 to N in the 5-MST; bottom-left: the ratio of

∑
|Ae |2 to |G |

√
N in the 5-MST; bottom-right: the ratio of∑

|Ae | |Be | to |G |1.5 in the 5-MST.

make the graph denser, such as 10-MST, these conditions are even more badly violated. However, in
many settings, the graph-based tests work better under denser graphs (see Section 1.3).

1.3. The merits of denser graphs in improving power for graph-based tests

Friedman and Rafsky (1979) found that the original edge-count test in general had a higher power
under the 3-MST than that under the 1-MST. Similarly, Chen and Friedman (2017) found that the
generalized edge-count test in general had a higher power under the 5-MST than that under the 1-MST.
We here check the performance of these tests under even denser graphs. In particular, for m = n = 100,
we consider the generalized edge-count tests on the 5-MST (GET5) and on the 50-MST (GET50), the
original edge-count tests on the 5-MST (OET5) and on the 50-MST (OET50). All K-MSTs here are
constructed under the Euclidean distance. We also include two other tests as baselines: the kernel two-
sample test in Gretton et al. (2012) with the p-value approximated by 10,000 bootstrap samples (Kernel)
and the Adaptable Regularized Hotelling’s T2 test (Li et al., 2020) (ARHT).

We consider different distributions in the comparison. Explicitly,

Xi = Σ
1
2 Ui, i = 1, · · · , 100, Yj = (1 + ad− 1

3 )Σ
1
2 Vj − bd− 1

3 1d, j = 1, · · · , 100,
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Figure 3. Estimated power of the generalized edge-count tests on the 5-MST (GET5) and on the 50-MST (GET50),
the original edge-count tests on the 5-MST (OET5) and on the 50-MST (OET50), the kernel test (Kernel), and the
Adaptable Regularized Hotelling’s T2 test (ARHT) under different simulation settings (i) - (iv).

with Σ = (0.5 |i−j | )1≤i, j≤d, where d is the dimension of the data, 1d is a d-length vector of all ones.
Let 0d be a d-length vector of all zeros and Id be a d-dimensional identity matrix. We consider four
different settings:

(i) U1, · · · , Um,V1, · · · , Vn
iid∼ N(0d, Id), a = b = 0.17,

(ii) U1, · · · , Um,V1, · · · , Vn
iid∼ N(0d, Id), a = 0.1,b = 0.6,

(iii) U1, · · · , Um,V1, · · · , Vn
iid∼ t5(0d, Id), a = b = 0.25,

(iv) U1, · · · , Um,V1, · · · , Vn
iid∼ Uniform[−0.5,0.5]d , a = 0.12,b = 0.1.

Here, a and b are chosen so that the tests have moderate power in low dimensions. The dimension
d ranges from 25 to 1000 with an increment of 25. The power of tests are estimated through 1,000
simulation runs (Figure 3). We see that GET50 works well in these settings, either having the best
power or on par with the test of the best power. GET5 in general has a lower power than GET50.
For OET, it is only powerful under setting (ii). The worse performance of OET compared to GET is
expected as OET covers less alternatives than GET for high-dimensional data (Chen and Friedman,
2017). Under setting (ii) where OET is powerful, OET50 has a higher power than OET5.
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1.4. Our contribution

From Section 1.3, we see that the use of denser graphs has a promising effect in improving power
for graph-based tests. So far, the best theoretical results on dense graphs are in Chen, Chen and Su
(2018) and Chu and Chen (2019), which allow the maximum size of possible graphs to be of order
Nα, 1 ≤ α < 1.25. But in the numerical studies in Section 1.3 where N = 200, the number of edges
in the 50-MST is 9950 (≈ N1.74). Existing conditions cannot work for such dense graphs. In addition,
even for sparse graphs, current existing conditions usually do not hold (see Section 1.2). Therefore,
it is important to figure out whether the conditions on graphs can be weakened and to what extent.
Throughout the paper, we consider simple undirected graphs that contain no duplicate edges and no
loops.

Friedman and Rafsky (1979) applied the moment-based method in Daniels (1944) to derive suffi-
cient conditions for the asymptotic normality of ZP

o , and Chen, Chen and Su (2018), Chen and Friedman
(2017), Chu and Chen (2019) made use of the bootstrap null distribution and the second neighbor de-
pendent Stein’s method to show the asymptotic normality of (R1,R2)T and ZP

w under the permutation
null distribution. In this paper, we seek improvements in both directions, especially the latter one. In
particular, we propose to use a “locSCB” (local Stein’s method on Conditioning Bootstrap) approach
that use Stein’s method to carefully deal with all the first neighbor dependency under the bootstrap null
distribution and link the permutation null distribution and bootstrap null distribution through condi-
tioning. By doing this, we are able to weaken the conditions on the graphs to a tremendous amount.
Under new conditions, the maximum size of possible graphs can be as large as M1−ε with an arbitrar-
ily small ε , where M =

(N
2
)

is the size of the complete graph. In addition, we also quantify the upper
bound of Stein’s inequality.

The “locSCB” approach is not limited to show the asymptotic properties of these four graph-based
test statistics listed in Section 1.1. It can be applied to some other nonparametric two-sample test statis-
tics and K-sample test statistics under the permutation null distribution, and to the change-point analy-
sis settings. The main theorems are provided in Section 2. We discuss the new conditions in Section 3
from various aspects. Section 4 provides detailed proof for the theorem on GET. The detailed proofs
for other edge-count tests are deferred to the Supplementary Material (Zhu and Chen, 2024).

2. Asymptotic distribution under denser graphs

We first state the main results for the four statistics. The discussion of new conditions are deferred to
Section 3. The proofs are provided in Section 4 and the Supplementary Material (Zhu and Chen, 2024).

We use
D−−→ to denote convergence in distribution, and use ‘the usual limit regime’ to refer N →∞

and limN→∞ m/N = r ∈ (0,1). We define Nsq as the number of squares in the graph, Ni, j as the number
of nodes connecting to nodes i and j simultaneously, and recall that d̃i = |Gi | − 2|G |/N (defined in
Section 1.2). The conditions needed for the asymptotic results of the four statistics are listed below.

C.1
∑N

i=1 |Gi |2 = o(|G |1.5), Nsq = o(|G |2);
C.2

∑N
i=1

��d̃i ��3 = o(V1.5
G

),
∑N

i=1 d̃i
3
= o(VG

√
|G |),

∑N
i=1

∑j�k
j ,k∈nodeGi

d̃j d̃k = o(|G |VG);

C.3 max(d̃i
2) = o(VG);

C.4
∑N

i=1 |Gi |2 = o(T1.5),
∑N

i=1

��d̃i ��3 = o(T1.5),
∑N

i=1
∑j�k

j ,k∈nodeGi
d̃j d̃k = o(T2), with T = |G | +VG .
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2.1. Generalized edge-count test

Theorem 1. Under Condition C.1 and C.2, in the usual limit regime, S
D−−→ χ2

2 under the permutation
null distribution.

A detailed comparison of the conditions in Theorem 1 to the best existing conditions is provided in
Section 3.1. We will see that Theorem 1 provides much weaker conditions.

The conditions in Theorem 1 are not easily understandable for a graph. In the following, we provide
a set of conditions that only involve up to the second moment of the degree distribution, and are easier
to understand. Let QG be a random variable generated from the degree distribution of a graph G built
on N nodes. Then it is not hard to see that E(QG) = 2|G |/N and Var(QG) =VG/N .

Corollary 2. Suppose |G | =O(KN) with 1 � K ≺ N, if max(1,K2/N)� Var(QG) ≺ K1.5
√

N, and the
concentration inequality

P(|QG − E(QG)| ≥ t) ≤ 2exp
(
− ct2

Na

)
, t > 0, (2)

holds for all large N with some constants c > 0 and 0 < a < 1, then, in the usual limit regime, S
D−−→ χ2

2
under the permutation null distribution.

Remark 3. Corollary 2 is derived from Theorem 1 at the cost of sacrificing some of its generality. The
conditions in Corollary 2 could be further weakened when more information on the degree distribution
is available. For the K-MST constructed on multivariate data, the maximum degree of the MST has
been studied for fixed dimensions (Robins and Salowe, 1994), which is of O(1). Hence, under fixed
dimensions, the maximum degree of the K-MST has the order at most of K , which is sufficient for
the conditions in Corollary 2 to hold when K =O(Nβ), β < 0.5. Similarly, under fixed dimensions, the
maximum degree of the K-NNG also has the order of at most K , and thus the conditions in Corollary 2
also hold for the K-NNG when K =O(Nβ), β < 0.5. To further relax K and/or dimensions, the degree
distributions of the K-MST or the K-NNG is needed, which is nontrivial for both fixed and non-fixed
dimensions and will be explored in future research.

2.2. Weighted and max-type edge-count test

Theorem 4. Under Condition C.1, in the usual limiting regime, ZP
w

D−−→ N(0,1) under the permutation
null distribution.

Theorem 5. Under Condition C.3, in the usual limit regime, ZP
diff

D−−→ N(0,1) under the permutation
null distribution.

Condition C.3 is equivalent to ∑N
i=1

��d̃i ��2+δ
V

2+δ
2

G

→ 0, for some δ > 0, (3)
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according to Hoeffding (1951). One condition in C.2 for Theorem 1 is actually setting δ to be 1 in (3).
Comparing conditions in Theorems 1, 4 and 5, it is not hard to see that the union of conditions for ZP

w

and ZP
diff separately is less stringent than those in Theorem 1. This is reasonable as Theorem 1 needs

the asymptotic normality of the joint distribution of (ZP
w,Z

P
diff) while Theorem 4 and 5 only needs that

for one of the marginal distributions.
For the max-type edge-count test, the limiting distribution of test statistic still requires the conditions

in Theorem 1. However, if some techniques are used to conservatively estimate the p-value for the max-
type statistic, such as the Bonferroni correction, then the union of the conditions in Theorems 4 and 5
would be enough.

Corollary 6. For graphs with |G | = O(KN) and 1 � K ≺ N, if Var(QG) ≺ K1.5
√

N and E(Q3
G
) =

o(K2N), then, in the usual limiting regime, ZP
w

D−−→ N(0,1) under the permutation null distribution.

Remark 7. For the K-MST and the K-NNG on the multivariate data with a fixed dimension, the
maximum degree has the order of K . Then, Var(QG) has the order at most K2/4, and E(Q3

G
) has the

order at most K3. Thus, the conditions in Corollary 6 hold for all K ≺ N .

Corollary 8. For graphs with |G | = O(KN) and 1 � K � N, if 1 � Var(QG) and the concentration
inequality

P(|QG − E(QG)| ≥ t) ≤ 2exp
(
− ct2

VGa

)
, t > 0,

holds for all large N with some constants c > 0 and 0 < a < 1, then, in the usual limit regime, ZP
diff

D−−→
N(0,1).

Remark 9. For the K-MST and the K-NNG constructed on multivariate data with a fixed dimension,
conditions in Corollary 8 hold if K = O(Nβ), β < 0.5, because VG has the order at least N when
1 � Var(QG).

2.3. Original edge-count test

Consider the usual limit region where limN→∞ m/N = r ∈ (0,1). When r = 0.5, the original edge-count
test is equivalent to the weighted edge-count test asymptotically. Thus, we here study the asymptotic
distribution of the original edge-count test statistic when r � 0.5.

Theorem 10. In the usual limit region and limN→∞
m
N = r with r a constant and r � 1

2 , under Condi-

tion C.4, ZP
o

D−−→ N(0,1) under the permutation null distribution.

The condition C.4 in Theorem 10 are weaker than the conditions required in Theorem 1 as T has the
order of max{|G |,VG}.

Corollary 11. For graphs with |G | = O(KN) and 1 � K ≺ N, in the usual limit regime and
limN→∞

m
N = r with r a constant and r � 1

2 , if either of the following conditions
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• |G | and VG do not have the same order, and

P(|QG − E(QG)| ≥ t) ≤ 2exp
(
−ct2

Ta

)
, t > 0,

• |G | �VG , and

P(|QG − E(QG)| ≥ t) ≤ 2exp
(
− ct2

Na

)
, t > 0,

holds for all large N with some constants c > 0 and 0 < a < 1, then ZP
o

D−−→ N(0,1).

Remark 12. For the K-MST and the K-NNG constructed on multivariate data with a fixed dimension,
conditions in Corollary 11 hold if K = O(Nβ) with β < 0.5 when |G | � VG . When |G | and VG do not
have the same order, these conditions hold as long as K ≺ N .

2.4. Some brief comments on the conditions

The sufficient conditions in Theorem 1 are derived using Stein’s method with the first neighbor depen-
dency. One key step is to have the upper bound in the Stein’s inequality

√
2
π

EB

���� ∑
i∈N

{
ξiηi − EB(ξiηi)

}
+

∑
e∈G

{
ξeηe − EB(ξeηe)

} ���� +∑
i∈N

EB |ξiη2
i | +

∑
e∈G

EB |ξeη2
e | (4)

to go to zero, where EB, ξi , ηi , ξe and ηe are defined in Section 4. Condition
∑N

i=1

��d̃i ��3 = o(V1.5
G

) en-

sures that the quantity
∑

i∈N EB |ξiη2
i | goes to zero. Conditions

∑N
i=1 d̃i

3
= o(VG

√
|G |) and

∑N
i=1 |Gi |2 =

o(|G |1.5) lead to the zero limit of the quantity
∑

e∈G EB |ξeη2
e |. To ensure the first quantity in (4) to go to

zero, under the three previous mentioned conditions (
∑N

i=1

��d̃i ��3 = o(V1.5
G

),
∑N

i=1 d̃i
3
= o(VG

√
|G |) and∑N

i=1 |Gi |2 = o(|G |1.5)), we need two additional conditions,
∑N

i=1
∑j�k

j ,k∈nodeGi
d̃j d̃k = o(|G |VG) and

Nsq = o(|G |2). Conditions in Theorems 4 and 10 are derived in a similar way.
Theorem 5 is derived in a different way as the test statistic in this case can be expressed into a

weighted sum of independent random variables. Then the Lyapunov CLT can be applied.
The locSCB approach used in proving Theorems 1, 4, 10 will be detailed in Section 4. For the

moment-based method, it was first proposed in Daniels (1944). Later, Friedman and Rafsky (1983)
claimed that Daniels’ conditions can be weakened and provided their new conditions. However, they did
not give an explicit proof. Pham, Möcks and Sroka (1989) found that conditions in Friedman and Rafsky
(1983) are not sufficient, so they fixed this problem and proposed a new set of weaker conditions.
By using the conditions in Pham, Möcks and Sroka (1989), the conditions to ensure the asymptotic
distributions of the graph-based tests can be weakened. However, we found that our locSCB approach
could result in even weaker conditions. A discussion of the conditions from the moment-based method
is detailed in Section S2 of the Supplementary Material (Zhu and Chen, 2024).
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3. Discussions on the new conditions

3.1. A comparison to the best existing conditions

For the asymptotic distribution of the generalized edge-count test statistic, Chu and Chen (2019) had
the best result that required the following conditions:

|G | =O(Nα), 1 ≤ α < 1.25,
∑
e∈G

|Ae | |Be | = o(|G |1.5),
∑
e∈G

|Ae |2 = o(|G |
√

N), VG =O(
N∑
i=1

|Gi |2).

We here compare our conditions in Theorem 1 with those in Chu and Chen (2019). We first state some
propositions with proofs deferred to Section S4 of the Supplementary Material (Zhu and Chen, 2024).

P.1
∑

e∈G |Ae |2 �
∑N

i=1 |Gi |3;
P.2

∑
e∈G |Ae | |Be | �

∑N
i=1 |Gi |2 |Gi,2 | +

∑N
i=1 |Gi,2 |2;

P.3
∑N

i=1
∑j�k

j ,k∈nodeGi
d̃j d̃k �

∑N
i=1 |Gi,2 |2 + |G |2

N2

∑N
i=1 |Gi |2;

P.4 Nsq �∑N
i=1 |Gi | |Gi,2 |.

The condition
∑N

i=1 |Gi |2 = o(|G |1.5) in Theorem 1 can be easily obtained from Proposition P.1 and
under the condition

∑
e∈G |Ae | |Be | = o(|G |1.5) as

N∑
i=1

|Gi |2 ≤
N∑
i=1

|Gi |3 �
∑
e∈G

|Ae |2 �
∑
e∈G

|Ae | |Be |.

For conditions
∑N

i=1 |d̃i |
3 = o(V1.5

G
) and

∑N
i=1 d̃i

3
= o(VG

√
|G |) in Theorem 1, we have,

N∑
i=1

d̃i
3 �

N∑
i=1

|d̃i |3 �
N∑
i=1

|Gi |3 +
|G |
N

N∑
i=1

|Gi |2 +
|G |3

N2 . (5)

Under conditions in Chu and Chen (2019), the right-hand side in (5) is dominated by VG
√
|G |, so it is

also dominated by V1.5
G

. For the condition on
∑N

i=1
∑j�k

j ,k∈nodeGi
d̃j d̃k , from Proposition P.3, we have

N∑
i=1

j�k∑
j ,k∈nodeGi

d̃j d̃k �
N∑
i=1

|Gi,2 |2 +
|G |2

N2

N∑
i=1

|Gi |2 �
N∑
i=1

|Gi,2 |2 +VG |G | |G |
N2 . (6)

Then, from Proposition P.2, we have
∑N

i=1 |Gi,2 |2 �
∑

e∈G |Ae | |Be |, which is dominated by |G |1.5 under
Chu and Chen (2019)’s conditions. With the fact that |G |1.5 � |G |VG and |G | � N2, the conditions in
Chu and Chen (2019) imply the condition

∑N
i=1

∑j�k
j ,k∈nodeGi

d̃j d̃k = o(|G |VG).
For the condition on Nsq in Theorem 1, from Propositions P.2 and P.4, we have that

Nsq �
N∑
i=1

|Gi | |Gi,2 | �
∑
e∈G

|Ae | |Be |.

Hence, the condition Nsq = o(|G |2) is weaker than the condition
∑

e∈G |Ae | |Be | = o(|G |1.5) in Chu and
Chen (2019).
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In the above inequalities, many are significantly loosened that the right-hand side could be much
larger than the left-hand side. For a graph that satisfies the conditions in Chu and Chen (2019), its
maximum size needs to be smaller than the order of N1.25. But for our new conditions, the size of
graph can be much larger.

For the weighted edge-count test, Chen, Chen and Su (2018) had the best result so far, and re-
quired that

∑
e∈G |Ae | |Be | = o(|G |1.5),

∑
e∈G |Ae |2 = o(|G |

√
N) and |G | = o(N1.5). Our conditions

in Theorem 4 only require
∑N

i=1 |Gi |2 = o(|G |1.5) and Nsq � |G |2, and they are much weaker as∑N
i=1 |Gi |2 �

∑
e∈G |Ae | |Be | and Nsq �∑

e∈G |Ae | |Be |.
Existing works have not studied the conditions for ZP

diff directly.
For the original edge-count test, Chen and Zhang (2015) had the best result so far. They require∑
e∈G |Ae | |Be | = o(min{N1.5, |G |1.5}) and |G | =O(Nα),α < 1.125, which are more stringent than con-

ditions in Theorem 10. For the condition
∑N

i=1 |d̃i |
3 = o(T1.5) in Theorem 10, we have

N∑
i=1

|d̃i |3 �
N∑
i=1

|Gi |3 +
|G |
N

N∑
i=1

|Gi |2 +
|G |3

N2 ,

where the right-hand side is dominated by |G |1.5 from Proposition P.2 and under Chen and Zhang
(2015)’s conditions. For the condition

∑N
i=1 |Gi |2 = o(T1.5) in Theorem 10, we have

∑N
i=1 |Gi |2 �∑

e∈G |Ae | |Be | ≺ |G |1.5. For the condition on
∑N

i=1
∑j�k

j ,k∈nodeGi
d̃i d̃j , from Propositions P.2 and P.3

and under Chen and Zhang (2015)’s condition on
∑

e∈G |Ae | |Be |, we have

N∑
i=1

j�k∑
j ,k∈nodeGi

d̃i d̃j �
N∑
i=1

��Gi,2
��2 + |G |2

N2

N∑
i=1

|Gi |2 ≺ |G |2 � T2.

For condition Nsq = o(T2
1 ), we have Nsq � ∑

e∈G |Ae | |Be | from Proposition P.2 and P.4. Under Chen
and Zhang (2015)’s condition,

∑
e∈G |Ae | |Be | is dominated by |G |1.5, so it is also dominated by T2.

3.2. How far are the new conditions from being necessary?

The conditions in Theorems 1, 4, 5 and 10 are sufficient conditions. One question is how far the new
conditions are from being necessary. Here, we focus on the generalized edge-count test and check
the validity of the asymptotic χ2

2 under some synthetic graphs. We repeatedly generate graphs from
particular generating rules, obtain the approximate distribution of the test statistic through random
permutations, and compare the approximate distribution with the χ2

2 distribution via Kolmogorov–
Smirnov (KS) test. For each simulation setting, we repeat 100 times, the proportion of rejection of the
KS test is plotted in Figure 4. We try to construct graphs that violate the conditions in Theorem 1. The
following six graph generating rules are considered:

(i) Fix N (N = 2000) nodes indexing from 1, · · · , N . Connect the first node to Nα nodes that are
randomly selected from nodes 2, · · · , N . Next, randomly select N edges from all pairwise edges
of nodes 2, · · · , N .

(ii) Fix N (N = 2000) nodes indexing from 1, · · · , N . Connect the first node to Nα nodes that are
randomly selected from nodes 2, · · · , N . Next, connect node i to node i + 1 for i ∈ {2, · · · , N − 1}
and finally connect nodes N and 2.

(iii) Fix N (N = 2000) nodes indexing from 1, · · · , N . Build the complete graph over the first
M = �Nα� nodes. Next, randomly select 2(N − M) edges from all pairwise edges of nodes
M + 1, · · · , N . Connect the above two subgraphs by adding one edge.
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Figure 4. Proportion of rejections from the χ2
2 distribution under different graph generating rules.

(iv) Fix N (N = 1000) nodes indexing from 1, · · · , N , and arrange them to be a circle in the sequence
of increasing number. Connect the node i to the next �Nα� nodes. Then connect the node 1 to
node 2 + �Nα�.

(v) Randomly sample N (N = 2500) observations from the 2-dimensional standard Gaussian distri-
bution. Build the K-MST on the observations with K = �Nα� and α ranging from 0.2 to 0.7.

(vi) Randomly sample N (N = 2500) observations from the 50-dimensional standard Gaussian dis-
tribution. Build the K-MST on the observations with K = �Nα� and α ranging from 0.2 to 0.7.

Under the graph-generating rule (i), the condition
∑N

i=1 |Gi |2 = o(|G |1.5) holds if 0 < α < 0.75, the

conditions
∑N

i=1 |d̃i |
3 = o(V1.5

G
) and

∑N
i=1 d̃i

3
= o(VG

√
|G |) hold if α < 0.5. The top-left panel in Fig-

ure 4 shows that the χ2
2 distribution approximation starts to be violated at α = 0.5, which is consis-

tent with the analytical result. Under the graph-generating rule (ii), the second sufficient condition∑N
i=1 |d̃i |

3 = o(V1.5
G

) does not hold for any 0 < α < 1, which is consistent with the simulation results.
Under the graph-generating rule (iii), the condition

∑N
i=1 |Gi |2 = o(|G |1.5) holds if α < 0.5, the condi-

tion
∑N

i=1 |d̃i |
3 = o(V1.5

G
) holds with 0 < α < 1, the condition

∑N
i=1 d̃i

3
= o(VG

√
|G |) holds if 0 < α < 0.5

and the condition Nsq = o(|G |2) holds if α < 0.5, which is consistent with the simulation results. Un-
der the graph-generating rule (iv), the condition

∑N
i=1 |d̃i |

3 = o(V1.5
G

) does not hold for any 0 < α < 1,
which is also consistent with the simulation results in bottom-left panel.

Under the graph-generating rules (v) and (vi), the K-MST is considered. Remark 3 states that the
sufficient conditions in Theorem 1 hold for the K-MST if K =O(Nβ) with β < 0.5 under fixed dimen-
sions. We can see that the χ2

2 approximation works well for β < 0.5. When d = 2, the approximation
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Figure 5. Relationship between the maximum degree of the K-MST and K under both dimensions, d = 2 (Scenario
(v)) and d = 50 (Scenario (vi)).

starts to deviate when α is bigger than 0.55. Interestingly, when the dimension is larger (d = 50), the
χ2

2 approximation still works well when α reaches 0.7. One plausible reason is that Remark 3 considers
the asymptotics under fixed dimensions, under which the maximum degree of the K-MST is of order
K . However, when d is large, the maximum degree of the K-MST is limited to be below the order of
K due to the insufficient sample size N . This can be seen from Figure 5 where the maximum degree
of K-MST are plotted over K . When d = 50, if we approximate the maximum degree by cKγ, then the
estimated value of γ is 0.70. Assume K =O(Nβ), the conditions in Corollary 6 hold as long as 2βγ < 1
that leads to β < 1/(2γ) = 0.713. This result shows that using the χ2

2 distribution to approximate the
distribution of the generalized edge-count statistic on K-MST for data with a relatively large dimension
is still a viable option even for K’s larger than the upper bound in Remark 3.

The densities of empirical distributions under these scenarios with specific choices of α’s such that
the asymptotic χ2

2 distribution is violated are plotted in Figure 6. When the asymptotic χ2
2 distribution

is violated, the asymptotic distribution of test statistics under different scenarios can be quite different.
However, it seems that the tail probability (on the right) is lighter than the χ2

2 distribution, which allows
us to still use the critical value obtained from the χ2

2 distribution to control the type I error. Here, the
study is through simulations. More systematical investigations will be done in future research.

3.3. Upper bounds of the difference to the limiting distribution

Since Stein’s method is used, we could compute the upper bound of the difference between the quantity
of interest and the standard normal distribution evaluated by Lipschitz-1 functions for finite samples.
Here we focus on Theorem 1. Figure 7 plots this upper bound (to be more specific, the right-hand side
of (12) in Section 4) for data in different dimensions and graphs in different densities. We consider
three settings: (i) d = 100, 5-MST; (ii) d = 100,

√
N-MST; (iii) d = N ,

√
N-MST; where data are all

generated from the multivariate Gaussian distribution. We see that the upper bound decreases as N
increases.
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Figure 6. Densities of empirical distributions under scenarios (i) - (v) with specific choices of α’s so that the
conditions in Theorem 1 are violated. We set N = 2000,α = 0.8 for scenarios (i), (ii), (iii), N = 1000,α = 0.5 for
scenario (iv), and N = 2500,α = 0.7 for scenario (v). The red line is the density of the χ2

2 distribution.

Figure 7. The upper bound under three settings. Each value in the plot takes the average among 100 simulation runs
with the setting. The red line is under the setting (i) with N ranging from 100 to 20000. The blue and green lines
are under settings (ii) and (iii), respectively, with N only ranging from 100 to 3000 due to their high computation
complexity at large N .
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3.4. Is a denser graph always more preferable?

Simulation results in Section 1.3 show that GET50 has a large power than GET5 under multiple sce-
narios. Here, we study the power of the generalized edge-count test on K-MST in more detail by
increasing the order of K continuously from 0 to 0.85. In particular, we set m = n = 100 and K = �Nβ�
with β ranging from 0 to 0.85. We consider 8 different scenarios, among which scenarios (i)–(iv) are
the same as those in Section 1.3 with a fixed dimension d = 500 and scenarios (v)–(ix) are listed below
with Σ = (0.5 |i−j | )1≤i, j≤d and d = 500. Scenarios (i) and (ii) compare Gaussian distributions with both
mean and variance to be different; scenarios (iii) and (iv) compare non-Gaussian distributions with
both mean and variance to be different; scenarios (v)–(vii) further compare Gaussian distributions with
only mean difference, only scale difference, and only covariance difference, respectively; scenario (viii)
compares Gaussian and non-Gaussian distributions; and scenario (ix) compares extremely heavy-tailed
distributions with both location and scale to be different.

(v) X1, · · ·,Xm
iid∼ N(0d,Σ) and Y1, · · ·,Yn

iid∼ N(0.6/d1/31d,Σ).
(vi) X1, · · ·,Xm

iid∼ N(0d,Σ) and Y1, · · ·,Yn
iid∼ N(0d,(1 + 0.17/d1/3)2 × Σ).

(vii) X1, · · ·,Xm
iid∼ N(0d, Id) and Y1, · · ·,Yn

iid∼ N(0d,Σ1) where Σ1 = (0.4 |i−j | )1≤i, j≤d.

(viii) X1, · · ·,Xm
iid∼ N(0d, Id) and Yi = (YT

i1 ,Y
T
i,2)

T with Yi,1 ∼ N(0d/2, Id/2), Yi,2 ∼ t30(0d/2, Id/2), and
i = 1, · · ·,n.

(ix) X1, · · ·,Xm
iid∼ t1(0d, Id) and Y1, · · ·,Yn

iid∼ t1(0.6/d1/31d,(1 + 0.17/d1/3)2 × Σ).

For each scenario and each K , we run 1,000 trials and the power is estimated as the proportion of
trials that reject the null hypothesis at 0.05 significance level. Figure 8 plots the estimated power. We
see that, when β increases from 0 to 0.25, the power of the test increases for all scenarios. However,
the optimal value of β varies across different scenarios. For some scenarios, the power increases till
β reaches 0.8 and then decreases; while for some scenarios, the power begins to decrease at a much
smaller β. Based on the observation, it is in general safe to consider graphs denser than O(N), while
the optimal density of the graph needs further investigation. One plausible way could be to choose a
few representative K’s to run the test and then use a multiple testing correction technique, such as the
Bonferroni correction, or a p-value combining technique, such as the harmonic mean p-value, to draw
the conclusion.

3.5. Checking empirical sizes

Theorems in Section 2 provide theoretical guarantees asymptotically. Here, we check empirical sizes
for finite samples under a few distributions. Let

Xi = Σ
1
2 Ui,i = 1, · · ·,m, Yi = Σ

1
2 Vj, j = 1, · · ·,n

with Σ = (0.5 |i−j | )1≤i, j≤d. Four distributions for Ui’s and Vj ’s are considered:

(i) U1, · · ·,Um,V1, · · · , Vn
iid∼ N(0d, Id),

(ii) U1, · · ·,Um,V1, · · · , Vn
iid∼ t5(0d, Id),

(iii) U1, · · ·,Um,V1, · · · , Vn
iid∼ Uniform[−1,1]d ,

(iv) U1, · · ·,Um,V1, · · · , Vn are iid with coordinates of Ui,Vj
iid∼ Exp(1).

Here, M =
(N

2
)

and we use �s� to denote the largest integer that is not larger than s. We consider both
the equal sizes (m = n = 100) and unequal sizes (m = 50,n = 100) cases. Table 2 presents the proportion
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Figure 8. Estimated power at 0.05 significance level of GET on K-MST with K = �Nβ�, β ∈ [0,0.85].

of trials (out of 1,000) that the generalized edge-count test statistic is greater than the 95% quantile of
χ2

2 under the equal sizes case. We see that the empirical size is quite close to the nominal level for all
simulation settings. The results for the generalized edge-count test under the unequal sizes case, the
original edge-count test, the weighted edge-count test, and the max-type edge-count test are similar,
and are presented in Section S4 of the Supplementary Material (Zhu and Chen, 2024).

Table 2. Empirical size of the generalized edge-count test with m = n = 100.

distribution d
|G | �M0.5� �M0.6� �M0.7� �M0.8� �M0.9� �M0.95� �M0.99�

0.5N 0.042 0.046 0.055 0.052 0.046 0.054 0.045
(i) normal N 0.049 0.042 0.052 0.056 0.046 0.042 0.059

1.5N 0.042 0.047 0.037 0.041 0.045 0.056 0.052
2N 0.045 0.058 0.049 0.053 0.058 0.051 0.053

0.5N 0.043 0.042 0.055 0.041 0.052 0.054 0.048
(ii) t5 N 0.036 0.04 0.035 0.058 0.055 0.047 0.046

1.5N 0.034 0.047 0.05 0.06 0.049 0.055 0.047
2N 0.045 0.044 0.045 0.053 0.039 0.053 0.066

0.5N 0.046 0.047 0.044 0.059 0.048 0.046 0.051
(iii) exp(1) N 0.042 0.047 0.053 0.055 0.05 0.047 0.059

1.5N 0.047 0.049 0.045 0.045 0.055 0.052 0.052
2N 0.05 0.042 0.051 0.052 0.042 0.052 0.051

0.5N 0.049 0.046 0.048 0.056 0.043 0.048 0.053
(iv) uniform N 0.045 0.043 0.042 0.046 0.049 0.047 0.047

1.5N 0.034 0.056 0.038 0.048 0.048 0.055 0.05
2N 0.05 0.047 0.048 0.044 0.055 0.049 0.058
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4. Proof of Theorem 1

To study the limiting distributions of ZP
w and ZP

diff jointly, we need to deal with the linear combinations
of

∑
e∈G 1{Je=1} and

∑
e∈G 1{Je=2}. It is clear that the items in these summations are dependent. The

dependency comes from two sources. One is due to the permutation null distribution – given one node
from sample X, the probability of another node coming from sample X is no longer m/N . The other
is due to the nature of the graph-based methods that different edges could share one common node.
To conquer these two issues, we work under the bootstrap null distribution to remove the dependency
caused by the permutation null distribution first, and then link statistics under the bootstrap null distri-
bution and the permutation null distribution together. For the dependency caused by the nature of the
graph-based method, we use the following Stein’s method.

Theorem 13 (Chen, Goldstein and Shao (2011) Theorem 4.13). Let {ξi,i ∈ J} be a random field
with mean zero, W =

∑
i∈J ξi and Var(W) = 1, for each i ∈ J there exits Ki ⊂ J such that ξi and ξKC

i

are independent, then

sup
f ∈Lip(1)

|E f (W) − E f (Z)| ≤
√

2
π

E

���� ∑
i∈J

{ξiηi − E(ξiηi)}
���� +∑

i∈J
E

����ξiη2
i

����,
where ηi =

∑
j∈Ki
ξj , Z is the standard normal.

The Stein’s method we rely on is different from that used in Chen and Friedman (2017), Chen and
Zhang (2015), Chu and Chen (2019). The main difference is that the theorem used in these earlier works
considers a second neighbor of the dependency that, for each i ∈ J , there exits Ki ⊂ Li ⊂ J such that
ξi is independent of ξKC

i
and ξKi is independent of ξLC

i
. Then the upper bound involves

∑
j∈Li
ξj

that could easily expand under the graph structure especially when the graph is dense, causing the
conditions to be stringent. We here turn to the Stein’s theorem that only considers the first neighbor of
dependency and the resulting quantities can be strategically handled to not expand too much to obtain
much weaker conditions. One difficulty in using this version of Stein’s method rather than the second-
neighbor version is that the summation is inside the absolute value for the first term on the right-hand
side, so we need to manipulate the terms carefully to not relax too much; the detailed manipulations
are provided in Section S3 of the Supplementary Material (Zhu and Chen, 2024).

The bootstrap null distribution places probability 1/2N on each of the 2N assignments of N observa-
tions to either of the two samples, i.e., each observation is assigned to sample X with probability m/N
and to sample Y with probability n/N , independently from any other observations. Let EB,VarB,CovB
be expectation, variance and covariance under the bootstrap null distribution. It is not hard to see
that the number of observations assigned to sample X may not be m. Let nX be this number and
ZX = (nX − m)/σB where σB is the standard deviation of nX under the bootstrap null distribution.
Notice that the bootstrap null distribution becomes the permutation null distribution conditioning on
nX =m. We express (ZP

w,Z
P
diff) in the following way:(

ZP
w

ZP
diff

)
=

[
σB
w/σP

w 0
0 φN

] (
ZB
w√

TGZB
diff/

√
VG

)
+

(
(μB

w − μP
w)/σP

w

(μB
diff − μ

P
diff)/σ

P
diff

)
, (7)

where ZB
w = (Rw − μB

w)/σB
w , ZB

diff = (Rdiff − μB
diff)/σ

B
diff, φN =

√
(N − 1)/N , TG =

∑N
i=1 |Gi |2 and

μB
w = EB(Rw) =

mnN − m2 − n2

N2(N − 2)
|G |, μB

diff = EB(Rdiff) =
m − n

N
|G |,
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σB
diff =

√
VarB(Rdiff) =

√
mn
N2

∑
|Gi |2, σB

w =
√

VarB(Rw) =

√√√
m2n2

N4 |G | + mn
N4

(m − n)2
(N − 2)2

N∑
i=1

|Gi |2,

μP
w = EP(Rw) =

(n − 1)(m − 1)
(N − 1)(N − 2) |G |, μP

diff = EP(Rdiff) =
m − n

N
|G |,

σP
diff =

√
m(m − 1)n(n − 1)

N(N − 1)(N − 2)(N − 3) (
m − 2
n − 1

+
n − 2
m − 1

+ 2)(
∑

|Gi |2 −
4|G |2

N
),

σP
w =

√
m(m − 1)n(n − 1)

N(N − 1)(N − 2)(N − 3)

(
|G | − 2

N(N − 1) |G |2 − 1
N − 2

(
∑

|Gi |2 −
4|G |2

N
)
)
.

Here we deal with ZB
w and

√
TG/VGZB

diff rather than ZB
w and ZB

diff directly to get rid of the condition
VG = O(

∑N
i=1 |Gi |2) appeared in Chen and Friedman (2017) and Chu and Chen (2019). Since the dis-

tribution of (ZB
w,

√
TG/VGZB

diff) under the permutation null distribution is equivalent to the distribution
of (ZB

w,
√

TG/VGZB
diff)|ZX = 0 under the bootstrap null distribution, we only need to show the following

two statements for proving Theorem 1:

S.1
(
ZB
w ,

√
TG/VG

(
ZB

diff −
√

1 −VG/TGZX

)
, ZX

)
is asymptotically multivariate Gaussian dis-

tributed under the bootstrap null distribution and the covariance matrix of the limiting distri-
bution is of full rank.

S.2 σB
w/σP

w → cw ; (μB
w − μP

w)/σP
w → 0; (μB

diff − μ
P
diff)/σ

P
diff → 0 where cw is a positive constant.

From statement S.1, the asymptotic distribution of (ZB
w,

√
TG/VG(ZB

diff−
√

1 −VG/TGZX )) conditioning
on ZX = 0 is a bivariate Gaussian distribution under the bootstrap null distribution, which further im-
plied that the asymptotic distribution of (ZB

w,
√

TG/VGZB
diff) under the permutation null distribution is a

bivariate Gaussian distribution. Then, with statement S.2, φN → 1 and equation (7), we have (ZP
w,Z

P
diff)

asymptotically bivariate Gaussian distributed under the permutation null distribution. Finally, plus the

fact that VarP(ZP
w) = VarP(ZP

diff) = 1 and CovP(ZP
w,Z

P
diff) = 0, we have that S

D−−→ χ2
2 .

The statement S.2 is easy to prove. It is clear that μB
diff − μ

P
diff = 0. It is also not hard to see that, under

condition
∑N

i=1 |Gi |2 = o(|G |1.5), in the usual limit regime, σB
w,σ

P
w are of the same order of

√
|G | and

(μB
w − μP

w)/σP
w goes to zero as |G | = o(N2) and

∑N
i=1 |Gi |2 = o(|G |N).

Next we prove the statement S.1. Let

W = a1ZB
w + a2

√
TG
VG

(
ZB

diff −
√

1 − VG
TG

ZX

)
+ a3ZX

= a1ZB
w + a2

√
TG
VG

ZB
diff +

(
a3 − a2

√
TG
VG

− 1

)
ZX . (8)

Firstly we show that, in the usual limit regime,

lim
N→∞

VarB(W) > 0 when at least one of a1,a2,a3 is not zero. (9)

Since gi’s are independent under the bootstrap null distribution, It is not hard to derive that

CovB(R1,nX ) = 2|G |p2q, CovB(R2,nX ) = −2|G |pq2.
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Then we have,

CovB(ZB
w,Z

B
diff) = pq

(n − m)
(N − 2)

∑N
i=1 |Gi |2

NσB
wσ

B
diff

, CovB(ZB
w,ZX ) = pq

2(n − m)
(N − 2)

|G |
NσB

wσ
B
,

CovB(ZB
diff,ZX ) =

2pq |G |
σB

diffσ
B
, (σB)2 = Npq,

where p = m/N,q = n/N .
Then the variance of W under the bootstrap null distribution can be computed as

VarB(W) = a2
1 + a2

2 + a2
3 + 2a1a2pq

n − m
N − 2

√
TG
VG

∑N
i=1 |Gi |2

NσB
wσ

B
diff

(10)

+ 4pqa1
n − m
N − 2

(
a3 − a2

√
TG
VG

− 1

)
|G |

NσB
wσ

B
,

= a2
1 + a2

2 + a2
3 + 4a1a3

√
pq

n − m
N − 2

|G |
N1.5σB

w

+ 2a1a2pq
n − m
N − 2

√
VG
σB
wN
.

Note that σB
w �

√
|G |, so

|G |
N1.5σB

w

�
√
|G |

N1.5 → 0 and
√

VG
σB
W N

�

√∑N
i=1 |Gi |2

|G |N2 → 0.

Thus, we have

lim
N→∞

VarB(W) = a2
1 + a2

2 + a2
3 .

This implies that the covariance matrix of the joint limiting distribution is of full rank. Then by Cramér–
Wold device, statement S.1 holds if W is asymptotically Gaussian distributed under the bootstrap null
distribution for any combinations of a1,a2,a3 such that at least one of them is nonzero.

We reorganized W in the following way

W =
a1

(
n−1
N−2 (R1 − |G |p2) + m−1

N−2 (R2 − |G |q2)
)

σB
w

+ a2

√
TG
VG

(
R1 − R2 − |G |p2 + |G |q2

)
σB

diff

+
(
a3 − a2

√
TG
VG

− 1
) (nX − m)
σB

=
∑
e∈G

( a1

σB
w

N
N − 2

(I{ge+=1} − p)(I{ge−=1} − p) − a1

σB
w

I{Je=1} + I{Je=2} − p2 − q2

N − 2

)

+
∑
e∈G

a2

√
TG
VG

1
σB

diff

(
I{ge+=1} + I{ge−=1} − 2p

)
+

∑
i∈N

(
a3 − a2

√
TG
VG

− 1
) (I{gi=1} − p)

σB .
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Define a function h : N → R and h(i) = I{gi=1} − p,i ∈ N . Then,

(I{ge+=1} − p)(I{ge−=1} − p) = h(e+)h(e−),

I{Je=1} + I{Je=2} − p2 − q2 = 2h(e+)h(e−) + (p − q)(h(e+) + h(e−)),

I{ge+=1} + I{ge−=1} − 2p = h(e+) + h(e−).

Thus, W can be expressed as

W =
∑
e∈G

a1

σB
w

h(e+)h(e−) +
(

a2

σB
diff

√
TG
VG

− a1(p − q)
σB
w(N − 2)

)
N∑
i=1

|Gi |h(i) +
∑
i∈N

(
a3 − a2

√
TG
VG

− 1
) h(i)
σB

=
∑
e∈G

a1

σB
w

h(e+)h(e−) +
N∑
i=1

(
a2√

pqVG

(
|Gi | −

2|G |
N

)
− a1(p − q)|Gi |
σB
w(N − 2)

+
a3√
pqN

)
h(i).

Let ξe = b0h(e+)h(e−) and ξi = bih(i) with

b0 =
a1

σB
w

, bi =
a2√

pqVG

(
|Gi | −

2|G |
N

)
− a1(p − q)|Gi |
σB
w(N − 2)

+
a3√
pqN
,

for i = 1, · · ·,N . Then

W =
∑
e∈G
ξe +

∑
i∈N
ξi . (11)

Plugging in the expressions of σB
w , It is not hard to see that

|b0 | �
1√
|G |
, |bi | �

1
√

VG

����|Gi | −
2|G |

N

���� + 1
√

N
.

Next, we apply the Stein’s method to W̃ =W/
√

VarB(W). Let J = G ∪ N , Ke = Ae ∪ {e+,e−} for
each edge e = (e+,e−) ∈ G and Ki = Gi ∪ {i} for each node i ∈ N . These Ke’s and Ki’s satisfy the
assumptions in Theorem 13 under the bootstrap null distribution. Then, we define ηe’s and ηi’s as
follows:

ηe = ξe+ + ξe− +
∑
e∈Ae

ξe, for each edge e ∈ G, and ηi = ξi +
∑
e∈Gi

ξe, for each node i ∈ N .

By theorem 13, we have

sup
h∈Lip(1)

|EBh(W̃) − EBh(Z)| ≤
√

2
π

1
VarB(W)EB

���� ∑
i∈N

{ξiηi − EB(ξiηi)} +
∑
e∈G

{ξeηe − EB(ξeηe)}
����

+
1

Var1.5B (W)

( ∑
i∈N

EB |ξiη2
i | +

∑
e∈G

EB |ξeη2
e |
)
. (12)

Our next goal is to find some conditions under which the RHS2 of inequality (12) can go to zero.
Since the limit of VarB(W) is bounded above zero when a1,a2,a3 are not all zeros, the RHS of inequality
(12) goes to zero if the following three terms go to zero:

2RHS: right-hand side; LHS: left-hand side.
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(A1) EB

����∑i∈N
{
ξiηi − EB(ξiηi)

}
+

∑
e∈G

{
ξeηe − EB(ξeηe)

}����,
(A2)

∑
i∈N EB |ξiη2

i |,
(A3)

∑
e∈G EB |ξeη2

e |.

For (A1), we have

EB

���� ∑
i∈N

{
ξiηi − EB(ξiηi)

}
+

∑
e∈G

{
ξeηe − EB(ξeηe)

} ����
≤ EB

���� ∑
i∈N

{
ξiηi − EB(ξiηi)

}
|
���� + EB

���� ∑
e∈G

{
ξeηe − EB(ξeηe)

} ����
≤

√√√√∑
i∈N

VarB(ξiηi) +
i�j∑
i, j

CovB(ξiηi, ξjηj ) +

√√√√∑
e∈G

VarB(ξeηe) +
e� f∑
e, f

CovB(ξeηe, ξ f η f )

=

√√√√∑
i∈N

VarB(ξiηi) +
N∑
i=1

∑
j∈nodeGi ,2

CovB(ξiηi, ξjηj)

+

√∑
e∈G

VarB(ξeηe) +
∑
e∈G

∑
f ∈Ce\{e}

CovB(ξeηe, ξ f η f ).

The last equality holds as ξiηi and {ξjηj }j�nodeGi ,2
are uncorrelated and ξeηe and {ξ f η f } f �Ce are

uncorrelated under the bootstrap null distribution. The covariance part of edges is a bit complicated to
handle directly, so we decompose it into three parts based on the relationship of e and f :∑

e∈G

∑
f ∈Ce\{e}

CovB(ξeηe, ξ f η f ) =
∑
e∈G

∑
f ∈Ae\{e}

CovB(ξeηe, ξ f η f ) +
∑
e∈G

∑
f ∈Be\Ae

CovB(ξeηe, ξ f η f )

+
∑
e∈G

∑
f ∈Ce\Be

CovB(ξeηe, ξ f η f ).

By carefully examining these quantities, we can show the following inequalities (13)–(20). Here, we
only need to consider the worst case, i.e. b0 and bi’s take the largest possible orders, denoted by c0 and
ci’s, i.e.

c0 =
1√
|G |
, and ci =

1
√

VG

����|Gi | −
2|G |

N

���� + 1
√

N
.

The details of obtaining (13)–(20) are provided in Section S3 of the Supplementary Material (Zhu and
Chen, 2024).

N∑
i=1

VarB (ξiηi)�
N∑
i=1

c4
i + c2

0

N∑
i=1

c2
i |Gi |, (13)

∑
e∈G

VarB (ξeηe)� c2
0

N∑
i=1

c2
i |Gi | + c3

0

N∑
i=1

ci |Gi | + c4
0

N∑
i=1

|Gi |2 (14)
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N∑
i=1

∑
j∈nodeGi ,2

CovB(ξiηi, ξjηj )�
N∑
i=1

∑
j∈nodeGi

(
c0c2

i cj + c2
0cicj) (15)

+

������c2
0

N∑
i=1

j∈nodeGi ,2∑
bibjNi, j

������
∑
e∈G

∑
f ∈Ae\{e}

CovB(ξeηe, ξ f η f )�
N∑
i=1

j�k∑
j ,k∈nodeGi

(
c3

0cj + c3
0ck + c3

0ci1{(j ,k) exists}
)

(16)

+c4
0 Nsq +

������
N∑
i=1

j�k∑
j ,k∈nodeGi

c2
0bjbk

������∑
e∈G

∑
f ∈Be\Ae

CovB(ξeηe, ξ f η f )� c4
0 Nsq (17)

∑
e∈G

∑
f ∈Ce\Be

CovB(ξeηe, ξ f η f ) = 0, (18)

N∑
i=1

EB[|ξiη2
i |]�

N∑
i=1

c3
i + c2

0

N∑
i=1

ci |Gi |, (19)

∑
e∈G

EB[|ξe |η2
e]� |G |c3

0 + c0

N∑
i=1

|Gi |c2
i + c3

0

N∑
i=1

|Gi |2. (20)

Based on facts that ci � 1 for all i’s, (A1), (A2) and (A3) going to zero as long as the following
conditions hold.

N∑
i=1

c3
i → 0, (21)

c2
0

N∑
i=1

ci |Gi | → 0, (22)

|G |c3
0 → 0, (23)

c0

N∑
i=1

|Gi |c2
i → 0, (24)

c3
0

N∑
i=1

|Gi |2 → 0, (25)

N∑
i=1

∑
j∈nodeGi

(
c0c2

i cj + c2
0cicj ) → 0, (26)

c2
0

N∑
i=1

∑
j∈nodeGi ,2

bibjNi, j → 0, (27)

c2
0

N∑
i=1

j�k∑
j ,k∈nodeGi

bibj → 0, (28)

c4
0(Nsq +

N∑
i=1

|Gi |2) → 0, (29)

N∑
i=1

j�k∑
j ,k∈nodeGi

(
c3

0cj + c3
0ck + c3

0ci1{(j ,k) exists}
)
→ 0. (30)
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Next, we show that the conditions in Theorem 1 can ensure (21)–(30).
For condition (21), we have

N∑
i=1

c3
i =

N∑
i=1

(
1

√
VG

����|Gi | −
2|G |

N

���� + 1
√

N

) 3

�
N∑
i=1

| |Gi | − 2 |G |
N |3

V1.5
G

+
1
√

N
,

so condition (21) holds when
∑N

i=1

��d̃i ��3 /V1.5
G

→ 0.
For condition (22), we have

c2
0

N∑
i=1

ci |Gi | = c2
0

N∑
i=1

|Gi |
1

√
VG

����|Gi | −
2|G |

N

���� + c2
0

1
√

N

N∑
i=1

|Gi |.

It is easy to check that the second term has the order of 1/
√

N , so it goes to zero as N →∞. The first
term is dominated by max |d̃i |/

√
VG , which goes to zero under condition

∑N
i=1

��d̃i ��3 /V1.5
G

→ 0 from

Theorem 1 in Hoeffding (1951) with r taking 3. Thus, condition (22) holds when
∑N

i=1

��d̃i ��3 /V1.5
G

→ 0.
Condition (23) holds trivially as |G |c3

0 = 1/
√
|G |.

For condition (24), we have

c0

N∑
i=1

|Gi |c2
i = c0

N∑
i=1

|Gi |
(

1
√

VG

����|Gi | −
2|G |

N

���� + 1
√

N

) 2

� c0

N∑
i=1

|Gi |

(
|Gi | − 2 |G |

N

) 2

VG
+ c0

1
N

N∑
i=1

|Gi |.

The second term has the order of
√
|G |/N , so it goes to zero when |G | = o(N2). The first term can be

written as

c0

N∑
i=1

|Gi |

(
|Gi | − 2 |G |

N

) 2

VG
= c0

∑N
i=1

(
|Gi | − 2 |G |

N

) 3

VG
+ c0

2|G |
N
,

so it goes to zero under conditions
∑N

i=1 d̃3
i /(VG

√
|G |) → 0 and |G | = o(N2).

For condition (25), it is directly equivalent to
∑N

i=1 |Gi |2 = o(|G |1.5). Note that condition |G | = o(N2)
also holds under condition

∑N
i=1 |Gi |2 = o(|G |1.5) as

∑N
i=1 |Gi |2 ≥ 4|G |2/N .

For condition (26), we have with the fact ci � 1 for all i’s

N∑
i=1

∑
j∈nodeGi

c0c2
i cj �

N∑
i=1

∑
j∈nodeGi

c0c2
i = c0

N∑
i=1

|Gi |c2
i ,

N∑
i=1

∑
j∈nodeGi

c2
0cicj �

N∑
i=1

∑
j∈nodeGi

c2
0ci = c2

0

N∑
i=1

|Gi |ci,

where both the right-hand sides go to zero from (22) and (24).
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For condition (27), we have

N∑
i=1

∑
j∈nodeGi ,2

bibjNi j =

N∑
i=1

∑
j∈nodeGi ,2

bibj

N∑
k=1

1{k connects i, j simultaneously }

=

N∑
k=1

∑
i∈nodeGk

∑
j∈nodeGk

\{i }
bibj =

N∑
k=1

i�j∑
i, j∈nodeGk

bibj,

so the left-hand side of condition (27) is equal to the term in condition (28).
For condition (28), we have

c2
0

N∑
i=1

j�k∑
j ,k∈nodeGi

bjbk �

������ 1
|G |VG

N∑
i=1

j�k∑
j ,k∈nodeGi

(
|G j | −

2|G |
N

) (
|Gk | −

2|G |
N

) ������
+

∑N
i=1 |Gi |1.5

|G |
√

N
+

∑N
i=1 |Gi |2

|G |N .

It is not hard to see that the second and the third term would go to zero as N →∞ under condition∑
|Gi |2/|G |1.5 → 0 as

∑N
i=1 |Gi |1.5

|G |
√

N
�

√
|G |

∑N
i=1 |Gi |2

|G |N ,

∑N
i=1 |Gi |2

|G |N �
∑N

i=1 |Gi |2

|G |1.5

√
|G |
N
.

Thus condition (28) holds if conditions
∑N

i=1
∑j�k

j ,k∈nodeGi

(
|G j | − 2 |G |

N

) (
|Gk | − 2 |G |

N

)
= o(|G |VG) and∑N

i=1 |Gi |2 = o(|G |1.5) hold.
For condition (29), it directly requires Nsq = o(|G2 |) as c3

0
∑N

i=1 |Gi |2 → 0.
For condition (30), we have, by symmetry,

N∑
i=1

j�k∑
j ,k∈nodeGi

c3
0cj =

N∑
i=1

j�k∑
j ,k∈nodeGi

c3
0ck .

Thus we only need to deal with two components
∑N

i=1
∑j�k

j ,k∈nodeGi
c3

0ci1{(j ,k) exists} and∑N
i=1

∑j�k
j ,k∈nodeGi

c3
0cj . It is not hard to see that they would go to zero under condition

∑N
i=1 |Gi |2 =

o(|G |1.5) as

N∑
i=1

j�k∑
j ,k∈nodeGi

c3
0cj ≤ c3

0

N∑
i=1

|Gi |
∑

j∈nodeGi

cj ≤ c3
0

N∑
i=1

|Gi |
√
|Gi |

∑
j∈nodeGi

c2
j � c3

0

N∑
i=1

|Gi |1.5,

N∑
i=1

j�k∑
j ,k∈nodeGi

c3
0ci1{(j ,k) exists} ≤ c3

0

N∑
i=1

ci |Gi |2 � c3
0

N∑
i=1

|Gi |2.
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