No eigenvalues outside the support of limiting empirical spectral distribution of a separable covariance matrix

Debashis Paul†1 and Jack W. Silverstein‡2

†Department of Statistics, University of California, Davis, CA 95616, USA;
Email : debashis@wald.ucdavis.edu; Fax : (+01) 530 752 7099

‡Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205, USA;
and SAMSI, Research Triangle Park, NC 27709-4006, USA;
Email : jack@math.ncsu.edu; Fax : (+01) 919 513 7336

Abstract

We consider a class of matrices of the form $C_n = (1/N)A_n^{1/2}X_nB_nX_n^*A_n^{1/2}$, where X_n is an $n \times N$ matrix consisting of i.i.d. standardized complex entries, $A_n^{1/2}$ is a nonnegative definite square-root of the nonnegative definite Hermitian matrix A_n, and B_n is diagonal with nonnegative diagonal entries. Under the assumption that the distribution of the eigenvalues of A_n and B_n converge to proper probability distributions, as $N \to c \in (0, \infty)$, the empirical spectral distribution of C_n converges a.s. to a non-random limit. We show that, under appropriate conditions on the eigenvalues of A_n and B_n, with probability 1, there will be no eigenvalues in any closed interval outside the support of the limiting distribution, for sufficiently large n. The problem is motivated by applications in spatio-temporal statistics and wireless communications.

Keywords : Empirical spectral distribution, Stieltjes transform, separable covariance, CDMA, MIMO.

1Paul was supported by the National Science Foundation under Agreement No. DMS-0112069, as part of a research fellowship from SAMSI.

2Silverstein’s work is supported by U.S. Army Research Office under Grant W911NF-05-1-0244

This material was based upon work supported by the National Science Foundation under Agreement No. DMS-0112069. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
1 Introduction

The aim of this paper is to extend the result in Bai and Silverstein (1998) to the eigenvalues of a more general class of random matrices, specifically matrices of the form

\[C_n = (1/N)A_n^{1/2}B_nX_nX_n^*A_n^{1/2}, \]

where for \(n = 1, 2, \ldots, \) \(X_n \) is \(n \times N \) \((N = N(n))\) consisting of i.i.d. standardized complex entries \((E X_{11} = 0, \ E |X_{11}|^2 = 1)\), \(A_n^{1/2} \) is a nonnegative definite square root of the \(n \times n \) Hermitian nonnegative definite matrix \(A_n \), and \(B_n = \text{diag}(b_1, b_2, \ldots, b_N) \), each \(b_i \geq 0 \). The matrices studied in Bai and Silverstein (1998) assume \(B_n = I_N \), the \(N \times N \) identity matrix. In that case \(C_n \) can be viewed as the sample covariance matrix consisting of \(N \) samples of the random vector \(A_n^{1/2}X_1 \) (\(X_1 \) denoting the first column of \(X_n \)), which has population covariance matrix \(A_n \). The matrix \(C_n \) can then be interpreted as the sample covariance matrix consisting of \(N \) weighted samples. There are other ways to interpret the matrix, being important in various applications. One example is the spatio-temporal sampling model to be described in Section 1.2.1. In wireless communications, \(H_n = (1/\sqrt{N})A_n^{1/2}B_n^{1/2} \), for general nonnegative definite matrix \(B_n \), is used to model the path gains between different groups of antennas in a multiple-input-multiple-output (MIMO) system (Section 1.2.2). It is typically assumed that \(X_{11} \) is complex Gaussian (real and imaginary parts independently distributed as \(N(0,1/2) \)), in which case the square of the singular values of \(H_n \) has the same distribution as the eigenvalues of \(C_n \) (the \(b_i \)’s being the eigenvalues of \(B_n \)).

1.1 Statement of the result

Results have previously been obtained on the limiting behavior of the empirical distribution function, \(F^{C_n} \), of its eigenvalues \((F^{C_n}(x) \equiv \text{(number of eigenvalues of } C_n \leq x)/n)\), (Burda (2005), Zhang (2006), Boutet de Monvel, Khorunzhy and Vasilchuck (1996)), with differing assumptions (the weakest appearing in Zhang (2006)) and varied (but equivalent) forms of expressions for the result. The following limit result is expressed in terms of the Stieltjes transform of \(F^{C_n} \), defined for any distribution function \(G \) as

\[m_G(z) = \int \frac{1}{\lambda - z} dG(\lambda), \quad z \in \mathbb{C}^+ = \{ z \in \mathbb{C} : \Re z > 0 \}. \]

Assume that the empirical distribution functions, \(F^{A_n} \) and \(F^{B_n} \), converge weakly, as \(n \to \infty \), to probability distribution functions, denoted respectively by \(F^A \) and \(F^B \), and \(c_n \equiv n/N \to c > 0 \). Then, with probability 1, \(F^{C_n} \) converges weakly to a probability distribution function \(F \) whose Stieltjes transform \(m(z) = m_F(z) \), for \(z \in \mathbb{C}^+ \), is given by

\[m(z) = \int \frac{1}{a \int \frac{b}{1 + e^a} dF^B(b) - z} dF^A(a), \quad (1) \]

where \(e = e(z) \) is the unique solution in \(\mathbb{C}^+ \) of the equation

\[e = \int \frac{a}{a \int \frac{b}{1 + e^a} dF^B(b) - z} dF^A(a). \quad (2) \]

It is remarked here that the result in Zhang (2006) covers arbitrary Hermitian nonnegative definite \(B_n \). Moreover, the assumption of identical distribution of the entries of \(X_n \) is weakened to a Lyapunov-type condition.
As in Bai and Silverstein (1998), the purpose of this paper is to prove, with additional assumptions, the almost sure non-appearance of eigenvalues of C_n in any interval away from the origin and outside the support of F as $n \to \infty$. Before the result can be formally stated we need one more definition. Let F_{cn,A_n,B_n} denote the distribution function whose Stieltjes transform is given by (1) replacing c, F^A and F^B with c_n, F^A_n and F^B_n, respectively.

The following will be proven:

Theorem 1: Assume the following:

(a) X_{ij}, $i, j = 1, 2, \ldots$, are i.i.d. complex-valued random variables with $E X_{11} = 0$, $E |X_{11}|^2 = 1$, and $E |X_{11}|^4 < \infty$.

(b) $N = N(n)$ with $c_n = n/N \to c > 0$ as $n \to \infty$.

(c) For each n, A_n is $n \times n$ Hermitian nonnegative definite, and $B_n = \text{diag}(b_1, \ldots, b_N)$ is $N \times N$, each $b_i \geq 0$, satisfying $F^A_n \xrightarrow{D} F^A$, $F^B_n \xrightarrow{D} F^B$, both limits being probability distribution functions.

(d) $\|A_n\|$ and $\|B_n\|$, the respective spectral norms of A_n B_n, are bounded in n.

(e) $C_n = (1/N) A_n^{1/2} X_n B_n X_n^* A_n^{1/2}$, where $A_n^{1/2}$ any Hermitian square root of A_n, $X_n = (X_{ij})$, $i = 1, 2, \ldots, n$, $j = 1, 2, \ldots, N$.

(f) The interval $[a, b]$ with $a > 0$ lies in an open interval outside the support of F_{cn,A_n,B_n} for all large n.

Then,
\[
P(\text{no eigenvalue of } C_n \text{ appears in } [a, b] \text{ for all large } n) = 1.
\]

The applicability of Theorem 1 depends on finding a way to determine the intervals outside the support of F_{cn,A_n,B_n}, as it exists for sample covariance matrices (Silverstein and Choi (1995)). In the latter case, the limiting Stieltjes transform $m(z)$ has an explicit inverse $z = z(m)$. It is straightforward to verify that a Stieltjes transform is increasing on intervals on the real line outside the support of its distribution function. Its inverse therefore exists on these intervals and is also increasing. Therefore plotting $z(m)$ for m real, and locating on the vertical axis places where the inverse is increasing, yield intervals outside the support. There does not appear to be an explicit inverse for (1). Nevertheless, preliminary work indicates a way to determine an inverse of $m(z)$ associated with an interval outside the support of the limiting spectral distribution. This has been established in the case of another class of random matrices (Dozier and Silverstein (2007)). Work in this area is currently being pursued.

1.2 Motivation

Our results give information on the behavior of individual eigenvalues. Results describing only the limiting behavior of the empirical spectral distribution provide information on the proportion of eigenvalues falling in any interval. But these results do not rule out the possibility of $o(n)$ eigenvalues scattered outside the support of the limiting empirical spectral distribution. The goal of our research is to establish that such a phenomenon does not occur for large enough n. Further research in our framework would allow for precise description of the location of the eigenvalues.
particular, we expect that the results proved here will be key to proving certain phase transition phenomena observed in the context of sample covariance matrices with $B_n = I_N$ and A_n having a few large isolated eigenvalues (Baik and Silverstein (2006), Baik, Ben Arous and Péché (2006), El Karoui (2006), Paul (2007)).

1.2.1 Application to spatio-temporal statistics

The data model we are considering here arises in the field of spatio-temporal statistics, where the rows of the $n \times N$ matrix $U_n = A_n^{1/2} X_n B_n^{1/2}$ correspond to indices of spatial locations and the column indices correspond to points in time. This class of models is also known as the separable covariance model. This is because, under the assumptions made here on the entries of X_n (i.i.d., mean 0, finite fourth moment), the joint (space-time) covariance of U_n, viewed as an $Nn \times 1$ vector consisting of the columns of the matrix U_n stacked on top of one another, is given by $\Sigma U_n = A_n \otimes B_n$, where \otimes denotes the Kronecker product between matrices. Note that, if we further assume Gaussianity for the entries of X_n, then the joint distribution of U_n is $N_{Nn}(0, A_n \otimes B_n)$. Also, in that setting, we do not require A_n and B_n to be diagonal, but only that they are nonnegative definite. The interpretation of this covariance structure is that the entries of U_n are correlated in time (column), but the pattern of temporal correlation does not vary with location (row). In other words, there is no space-time interaction in the process.

One advantage of this model from a statistical estimation point of view is that, when N is large and n is comparatively small, so that $\frac{n}{N} \to 0$ as $n \to \infty$, it is possible to get quite reliable estimate of A_n from the sample covariance matrix $C_n = \frac{1}{N} U_n U_n^*$. Indeed, in that setting, if moreover $\|A_n\|$ is bounded above, it is not hard to verify that $\|C_n - \frac{1}{N}(\text{tr} B_n) A_n\| \to 0$ a.s., as $n \to \infty$. So, the spectral properties of A_n can be recovered from that of the spectrum of C_n. Of course, the key questions we are addressing here relate to the situation where $\frac{n}{N} \to c \in (0, \infty)$. The behavior of the empirical spectrum in that setting is hitherto unknown.

The results and techniques presented in this paper may prove useful in this problem for a number of different reasons. A statistical problem related to such spatio-temporal processes is to understand the temporal variability of the spatial field. One of the approaches for understanding the temporal variability is to perform an eigen-analysis (in space) of the sample covariance matrix C_n. This is because, the weights of the different eigenvectors of C_n, in representing the columns of U_n (principal components scores), vary in time. These weights therefore capture the temporal variability of the orthogonal components (eigenvectors of C_n) of the spatial process. The eigenfunctions thus obtained are usually referred to as empirical orthogonal functions (particularly in climatology, see, e.g. von Storch and Zwiers (1999)). Understanding the asymptotic behavior of the sample eigenvalues and eigenfunctions therefore is a relevant question, since, under the separable space-time model they give a set of orthogonal components, and their relative strengths, of the spatial variation of the process.

1.2.2 Application to wireless communication

In wireless communications, $H_n = (1/\sqrt{N}) A_n^{1/2} X_n B_n^{1/2}$, for a general nonnegative definite matrix B_n, appears in a variety of models, including both direct-sequence and multiple-carrier code-division multiple-access systems (Tulino and Verdú (2004), sections 3.1-3.2), and in multiple-input-multiple-output (MIMO) systems (Tulino and Verdú (2004), section 3.3). The importance of acquiring more detailed information on the singular values of H_n beyond what the limiting empirical distribution ((1), (2)) reveals, which has been primarily used to estimate capacity, is becoming more apparent.
For example, in Verdú (2002) an estimate of capacity requires knowledge of the largest singular value of H_n which Theorem 1 provides. Indeed, the a.s. convergence of the largest singular value of H_n is an analog of the corollary to Theorem 1.1 in Bai and Silverstein (1998) and readily follows from Theorem 1 using similar arguments. Another example is in MIMO systems, where H_n models the path gains between different groups of antennas. It is typically assumed that X_{11} is complex Gaussian (real and imaginary parts independent $N(0,1/2)$), in which case the square of the singular values of H_n has the same distribution as the eigenvalues of C_n (the b_i’s being the eigenvalues of B_n). The matrices A_n and B_n are the covariances between the receiver and the transmitter antennas, respectively. They reflect the scenario involving these two groups of antennas, for example, their locations, and the nature of the interference encountered due to their surroundings. The singular values of H_n, or equivalently the eigenvalues of C_n, indicate several important properties of the communication scheme, due to the fact that any information on H_n yields ways to allocate the transmitted signal in an optimal way. For example, if there is a significant number of small eigenvalues, transmission can be achieved after performing a unitary transformation, on the left and/or the right side of H_n, resulting in a reduced number of virtual parallel antennas with little correlation between them. When the number of antennas is sizeable, knowledge of the eigenvalues of C_n, depending only on A_n and B_n, is gained to some extent from the limiting F. It yields the proper proportion of eigenvalues within any interval. However, Theorem 1 is a step toward knowing the location of all the singular values, which provides much more information. For example, it can ensure that no lone eigenvalue above or below the limiting support exists. The importance of Theorem 1 lies in the determination of spectral behavior of C_n entirely through A_n and B_n.

The essential portion of the proof of Theorem 1 will proceed in the following sections. The main tools used in the proof are properties of Stieltjes transform and bounds on the moments of martingale difference sequences. The results to be obtained here are analogous to those in sections 3-5 of Bai and Silverstein (1998), namely, we will show

$$\sup_{x \in [a,b]} |m_n(z) - m_0^0(z)| = o(1/(nv_n)) \quad \text{a.s.,}$$ \hspace{1cm} (3)

where

$$m_n = m_n(z) = m_{F C_n}(z) = (1/n) \text{tr} (C_n - zI)^{-1}$$ \hspace{1cm} (4)

is the Stieltjes transform of the empirical distribution function of the eigenvalues of C_n,

$$m_0^0 = m_0^0(z) = m_{F_{C_n}, A_n, B_n}(z)$$ \hspace{1cm} (5)

and $z = x + iv_n$, where $v_n = \kappa n^{-1/140}$, κ an arbitrary positive constant (fixed for all n).

The steps needed to conclude Theorem 1 from (3) are identical to those in section 6 of Bai and Silverstein (1998), except for the fact that in the latter paper $v_n = N^{-1/68}$. In particular, following the same arguments one can prove that, if a', b' are such that $a' < a$, $b < b'$, and the interval $[a', b']$ also satisfies condition (f) of Theorem 1, then

$$\sup_{x \in [a,b]} \left| \int \frac{I_{[a', b']}}{(x - \lambda)^2 + v_n^2)((x - \lambda)^2 + 2v_n^2) \cdots ((x - \lambda)^2 + 70v_n^2)} \right| d(F_{C_n}^{C_n}(\lambda) - F_{C_n, A_n, B_n}(\lambda))$$

$$+ \sum_{\lambda_i \in [a', b']} \frac{v_n^{140}}{(x - \lambda_i)^2 + v_n^2)((x - \lambda_i)^2 + 2v_n^2) \cdots ((x - \lambda_i)^2 + 70v_n^2)} | = o(1), \quad \text{a.s.} \quad (6)$$
where the λ_j’s denote the eigenvalues of C_n. From this, using the fact that the integral in (6) converges a.s. to 0, one can argue that, with probability one, no eigenvalue of C_n appears in $[a, b]$ for all sufficiently large n.

Before proceeding, we simplify here some of the assumptions. It is clear from assumption (d) of Theorem 1 that, we can without loss of generality assume throughout that $\max\{|A_n|, |B_n|\} \leq 1$ for all n. Also, the argument given at the beginning of section 3 of Bai and Silverstein (1998) carries through in our case. Specifically, for any $C > 0$ let $Y_{ij} = X_{ij}I_{(|X_{ij}| \leq C)} - \mathbb{E}X_{ij}I_{(|X_{ij}| \leq C)}$ (where I_A denotes the indicator function on the set A), $Y_n = (Y_{ij})$, $i \leq n$, $j \leq N$, $\tilde{C}_n = (1/N)A_n^{1/2}Y_nB_nY_n^*A_n^{1/2}$, and $\hat{\lambda}_k$, $\hat{\lambda}_k$ the respective eigenvalues of C_n and C_n in nonincreasing order. Then as in Bai and Silverstein (1998), using the main result in Yin, Bai, and Krishnaiah (1988) on the largest eigenvalue of $(1/N)X_nX_n^*$, we have, with probability 1

$$
\limsup_{n \to \infty} \max_{k \leq n} |\lambda_k^{1/2} - \hat{\lambda}_k^{1/2}| \leq (1 + \sqrt{C})E^{1/2}|X_{11}|^2I_{(|X_{11}| \leq C)},
$$

and because of assumption (a) we can make the bound on the right side arbitrarily small by choosing C sufficiently large. Thus we can assume that the X_{ij} are uniformly bounded.

The rest of the paper is organized as follows. In Section 2, we give the key steps to the derivation of the integral equations for the limiting Stieltjes transforms of associated spectral measures. In Sections 3 and 4 we will show, respectively

$$
\sup_{x \in [a, b]} |m_n(x) - \mathbb{E}m_n(x)| = o(1/(nv_n)) \quad \text{a.s.} \quad (7)
$$

and

$$
\sup_{x \in [a, b]} |\mathbb{E}m_n(x) - m_n^0(x)| = O(1/n). \quad (8)
$$

Some mathematical tools needed in proving these results are given in the Appendix. Throughout this paper, K denotes a universal constant whose value may vary from one appearance to another.

2 Integral representation of Stieltjes transforms

Write $X_n = [X_1, \ldots, X_N]$, and let $y_j = (1/\sqrt{N})A_n^{1/2}X_j$. Then we can write

$$
C_n = \sum_{j=1}^N b_jy_jy_j^*.
$$

Fix $z \in \mathbb{C}^+ \equiv \{z = x + iv \in \mathbb{C} : v > 0\}$. Define

$$
e_n = e_n(z) = (1/n)\text{tr} \ A_n(C_n - zI)^{-1}, \quad (9)
$$

and

$$
p_n = \frac{1}{Nv} \sum_{j=1}^N b_j \frac{1}{1 + c_n b_j e_n} = \int \frac{-b}{z(1 + c_n b e_n)} dF_{B_n}(b). \quad (10)
$$

Write $C_n = O\Lambda O^*$, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, in its spectral decomposition. Let $A_n = \{a_{ij}\} = O^*A_nO$. Then

$$
e_n = (1/n)\text{tr} \ A_n(\Lambda - zI)^{-1} = (1/n) \sum_{i=1}^n \frac{a_{ii}}{\lambda_i - z}. \quad (11)
$$
We therefore see that e_n is the Stieltjes transform of a measure on the nonnegative reals with total mass $(1/n)\text{tr } A_n$. It follows that both $e_n(z)$ and $z e_n(z)$ map \mathbb{C}^+ into \mathbb{C}^+. This implies that $p_n(z)$ and $z p_n(z)$ map \mathbb{C}^+ into \mathbb{C}^+, and as $z \to \infty$, $z p_n \to -(1/N)\text{tr } B_n$. Therefore, from Lemma 5 we also have p_n a Stieltjes transform of a measure on the nonnegative reals with total mass $(1/N)\text{tr } B_n$.

It follows that e_n and p_n are bounded in absolute value by $v^{-1}(1/n)\text{tr } A_n$ and $v^{-1}(1/N)\text{tr } B_n$, respectively.

More generally, from Lemma 5 we have any function of the form

$$\frac{-b}{z(1 + m(z))},$$

where $b \geq 0$ and $m(z)$ is the Stieltjes transform of a bounded measure on \mathbb{R}^+, to be the Stieltjes transform of a measure on the nonnegative reals with total mass b. It follows that

$$\left| \frac{-b}{z(1 + m(z))} \right| \leq \frac{b}{v}.$$ \hspace{1cm} (12)

Let $C_{(j)} = C_n - b_j y_j y_j^*$. We may, without loss of generality, assume that $\max(\|A_n\|, \|B_n\|) \leq 1$. Write

$$C_n - zI + z p_n A_n = \sum_{j=1}^N b_j y_j y_j^* + z p_n A_n.$$

Taking inverses and using the definition of C_n and $C_{(j)}$, we have

$$\left(C_n - zI \right)^{-1} + (zI + z p_n A_n)^{-1} = \sum_{j=1}^N b_j (C_n - zI)^{-1} y_j y_j^* (zI + z p_n A)^{-1} + z p_n (C_n - zI)^{-1} A_n (zI + z p_n A)^{-1}$$

$$= \sum_{j=1}^N b_j \frac{(C_{(j)} - zI)^{-1} y_j y_j^* (zI + z p_n A)^{-1}}{1 + b_j y_j^* (C_{(j)} - zI)^{-1} y_j} + z p_n (C_n - zI)^{-1} A_n (zI + z p_n A)^{-1},$$

where the last step follows from Lemma 1 in the appendix.

Taking traces and dividing by n, we have

$$m_n(z) - \int \frac{1}{a \int \frac{b}{1 + c_n b_n} dF_{B_n}(b) - z} dF_{A_n}(a) = \frac{1}{N} \sum_{j=1}^N b_j d_j \equiv w^m_n,$$

where

$$d_j = \frac{(1/n)x_j^2 A_n^{1/2}(I + p_n A_n)^{-1}(C_{(j)} - zI)^{-1} A_n^{1/2}}{z(1 + b_j y_j^* (C_{(j)} - zI)^{-1} y_j)} - \frac{(1/n) \text{tr } (C_n - zI)^{-1} A_n (I + p_n A_n)^{-1}}{z(1 + c_n b_j e_n)}.$$

Multiplying both sides of the above matrix identity by A_n, and then taking traces and dividing by n, we find

$$e_n(z) - \int \frac{a}{a \int \frac{b}{1 + c_n b_n} dF_{B_n}(b) - z} dF_{A_n}(a) = \frac{1}{N} \sum_{j=1}^N b_j d_j^e \equiv w^e_n,$$

where

$$d_j^e = \frac{(1/n)x_j^2 A_n^{1/2}(I + p_n A_n)^{-1} A_n (C_{(j)} - zI)^{-1} A_n^{1/2}}{z(1 + b_j y_j^* (C_{(j)} - zI)^{-1} y_j)} - \frac{(1/n) \text{tr } A_n (C_n - zI)^{-1} A_n (I + p_n A_n)^{-1}}{z(1 + c_n b_j e_n)}.$$
2.1 Bound on the approximation error

Notice that for each \(j \), \(y_j^*(C_{(j)} - zI)^{-1}y_j \) can be viewed as a Stieltjes transform of a measure on \(\mathbb{R}^+ \). Therefore

\[
\left| \frac{1}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)} \right| \leq \frac{1}{v}.
\]

For each \(j \), let \(e_{(j)} = e_{(j)}(z) = (1/n)\text{tr} A_n(C_{(j)} - zI)^{-1} \), and

\[
p_{(j)} = p_{(j)}(z) = \int \frac{-b}{z(1+c_nbe_{(j)})} dF^{B_n}(b),
\]

both of course being Stieltjes transforms of measures on \(\mathbb{R}^+ \), along with the integrand for each \(b \).

Using Lemma 1 and Lemma 2(a) in the appendix, (12) and the fact that \(\| B_n \| \leq 1 \), we have

\[
|p_n - p_{(j)}| = |e_n - c_{(j)}|c_n \int \frac{b^2}{z(1+c_nbe_{(j)})(1+c_nbe_{(j)})} dF^{B_n}(b) \leq \frac{4e_n^2}{nv^3}. \tag{13}
\]

In order to handle both \(w_n^m \), \(d_j \) and \(w_n^c \), \(d_j \) at the same time, we shall denote by \(E_n \) either \(A_n \) or \(I_n \), and \(w_n, d_j \) for now will denote either the original \(w_n^m \), \(d_j \) or \(w_n^c \), \(d_j \).

Write \(d_j = d_j^1 + d_j^2 + d_j^3 + d_j^4 \), where

\[
d_j^1 = \frac{(1/n)x_j^*A_n^{1/2}(I + p_nA_n)^{-1}E_n(C_{(j)} - zI)^{-1}A_n^{1/2}x_j}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)} - \frac{(1/n)x_j^*A_n^{1/2}(I + p_{(j)}A_n)^{-1}E_n(C_{(j)} - zI)^{-1}A_n^{1/2}x_j}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)},
\]

\[
d_j^2 = \frac{(1/n)x_j^*A_n^{1/2}(I + p_{(j)}A_n)^{-1}E_n(C_{(j)} - zI)^{-1}A_n^{1/2}x_j}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)} - \frac{(1/n)\text{tr} E_n(C_{(j)} - zI)^{-1}A_n(I + p_{(j)}A_n)^{-1}}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)},
\]

\[
d_j^3 = \frac{(1/n)\text{tr} E_n(C_{(j)} - zI)^{-1}A_n(I + p_{(j)}A_n)^{-1}}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)} - \frac{(1/n)\text{tr} E_n(C_n - zI)^{-1}A_n(I + p_nA_n)^{-1}}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)},
\]

and

\[
d_j^4 = \frac{(1/n)\text{tr} E_n(C_n - zI)^{-1}A_n(I + p_nA_n)^{-1}}{z(1+b_jy_j^*(C_{(j)} - zI)^{-1}y_j)} - \frac{(1/n)\text{tr} E_n(C_n - zI)^{-1}A_n(I + p_nA_n)^{-1}}{z(1+c_nbe_n)}.
\]
For the rest of this subsection, we assume that for all n large, $v = v_n = \kappa n^{-\delta}$ for some $\kappa > 0$ and $\delta \geq 0$. We wish to show that for all $\delta \leq 1/4$, for arbitrary subset $S_n \subset \mathbb{R}$ containing at most n elements, and arbitrary positive t and ϵ, we have

$$P(\max_{x \in S_n} |w_n - 12| > \epsilon) \leq K_t \epsilon^{-2} n^{2-2t(1-34\delta)}$$

by proving the same bound on each of

$$P(\max_{j \leq N, x \in S_n} |d_j^1| v_n^{-12} > \epsilon),$$

for $i = 1, 2, 3, 4$. Note that the constants K_t and K_p (appearing later) are positive constants.

We begin with d_j^1. We get from Lemma 2(c) and (13),

$$|d_j^1| \leq \frac{K_{v_n^3}}{v_n} \|X_j\| \|X_j\|^2 = \frac{64 c_n^2 H_n}{n^2 v_n^2}.$$

From Lemma 3 it is straightforward to argue that for $p \geq 2$

$$E\|X_j\|^p \leq K_p n^p.$$

Therefore for $p \geq 2$

$$P(\max_{j \leq N, x \in S_n} |d_j^1| v_n^{-12} > \epsilon) \leq n^2 \left(\max_{j \leq N} \frac{\|X_j\|^2}{n^2 v_n^{19}} \right)^2 \leq K_p nN \left(\frac{1}{v_n^{19}} \right)^p.$$

For d_j^2 we use Lemma 2(a) and Lemma 3 to get, for $p \geq 2$,

$$E|v_n^{-12} d_j^2|^p \leq K_p v_n^{-13p} n^{-p/2} v_n^{-2p} = K_p \left(\frac{1}{n^{1/2} v_n^{15}} \right)^p,$$

so that for $\epsilon > 0$, $p \geq 2$

$$P(\max_{j \leq N, x \in S_n} |d_j^2| v_n^{-12} > \epsilon) \leq K_p \epsilon^{-p} \left(\frac{nN}{(n^{1/2} v_n^{15})^p} \right).$$

Using Lemma 1, Lemma 2(a), 2(b), and (13) we have,

$$|d_j^3| v_n^{-12} \leq K \left(\frac{1}{n^2 v_n^6} + \frac{1}{n v_n^6} \right) \leq K \frac{1}{n v_n^{12}}.$$

Therefore for any $p \geq 1$ and $\epsilon > 0$

$$P(\max_{j \leq N, x \in S_n} |d_j^3| v_n^{-12} > \epsilon) \leq K_p \epsilon^{-p} \left(\frac{nN}{(n^{1/2} v_n^{15})^p} \right).$$

Finally, for d_j^4, we use Lemma 1 and Lemma 2(a) to find:

$$|d_j^4| v_n^{-12} \leq 4 \frac{1}{v_n^3} \left(\left| \frac{1}{n} X_j^* A_n (C_{j-1}) - zI \right| X_j - \left(\frac{1}{n} \text{tr} A_n (C_{j-1}) - zI \right) \right) + (nv_n)^{-1}. $$
Therefore, by Lemma 3, for any \(\epsilon > 0, p \geq 2 \), we have
\[
\mathbb{P}(\max_{j \leq N, x \in S_n} |d_j^1|v_n^{-12} > \epsilon) \leq \sum_{j \leq N, x \in S_n} \left[\mathbb{P} \left(\frac{4}{\nu_n^6}(1/n)X_j^*A_n(C_{(j)} - zI)^{-1}X_j - (1/n)^{1/2} A_n(C_{(j)} - zI)^{-1} > \frac{\epsilon}{2} \right) + K\rho\epsilon^{-p}(nv_n^{11})^{-p} \right] \leq Kp\epsilon^{-p} \frac{nN}{(n^{1/2}v_n^{17})^p},
\]
which, for \(\delta \in [0, 1/4] \), can easily be verified to be the largest of the four bounds. Therefore, (14) holds.

2.2 Existence, convergence, and continuity of the solution

We can at this stage provide a proof of the existence of a unique \(e \) with nonnegative imaginary part satisfying (2) for any \(z = x + iv, v > 0 \), and the a.s. convergence in distribution of \(F_{C_n} \) to \(F \). We also show the continuous dependence of \(e \) on \(F^A, F^B, \) and \(c \). We see from (14) with \(\delta = 0, \kappa = v \) and \(t > 3 \) we have

\[
e_n(z) = \int \frac{a}{z(1 + c_nbe_n)}dF^A_n(a) \quad \text{and} \quad m_n(z) = \int \frac{1}{z(1 + c_nbe_n)}dF^A_n(a)
\]

converge a.s. to zero. Consider a realization for which both convergences to zero occur on a subsequence \(\{n_i\} \) for which \(e_{n_i} \) converges, say to \(e \). Because of (12), we have, by the Dominated Convergence Theorem (DCT)

\[
p_n = \int \frac{-b}{z(1 + c_nbe_n)}dF^B_n(b) \to \int \frac{-b}{z(1 + cbe)}dF^B(b) \equiv p
\]

and

\[
\int \frac{a}{z(1 + c_nbe_n)}dF^A_n(a) = \int \frac{-a}{z(1 + c_nap_n)}dF^A_n(a) \to \int \frac{-a}{z(1 + cap)}dF^A(a) \equiv \int \frac{a}{z(1 + cbe)}dF^A(a)
\]

along the subsequence. Thus \(e \) is a solution to (2).

From uniqueness of \(e \), proved below, we must have convergence of \(e_n \) to \(e \) on the whole sequence. Therefore, again by the DCT we have

\[
m_n(z) \to \int \frac{1}{z(1 + cbe)}dF^B(b) - z
\]

This event occurs with probability one, and for a countable number of \(v \)'s with a limit point. Since the limsup of the largest eigenvalue of \(C_n \) is a.s. bounded by \((1 + \sqrt{c})^2 \) (by Lemma 4), the sequence \(\{F_{C_n}\} \) is almost surely tight. Therefore, \(F_{C_n} \) converges in distribution to \(F \) a.s.
For probability distribution functions F^A and F^B on $[0, 1]$ and $c > 0$, let $\xi = \xi(z)$ be a solution to (2) with F^A, F^B, c replaced by F^A, F^B, and ξ, respectively. Assume that $c \leq \xi$. Then we have

\[
e - \xi = \int \frac{a}{a + \frac{b}{1 + c\xi}} dF^B(b) - \xi \cdot dF^A(a) - F^A(a) + \frac{a^2}{a + \frac{b}{1 + c\xi}} dF^B(b) \int (\frac{b}{1 + c\xi}) dF^B(b) - \xi \cdot dF^A(a)
\]

\[
+ (c - \xi) \int \frac{a^2}{a + \frac{b}{1 + c\xi}} dF^B(b) \int (\frac{b}{1 + c\xi}) dF^B(b) - \xi \cdot dF^A(a) + \gamma(c - \xi), \quad (15)
\]

where

\[
\gamma = c \int \frac{a^2}{a + \frac{b}{1 + c\xi}} dF^B(b) \int (\frac{b}{1 + c\xi}) dF^B(b) - \xi \cdot dF^A(a).
\]

Notice that by (12), the first integrand in (15) is bounded in absolute value by $1/v$, the second by $|z|/v^3$, and the third by $|z|^2/v^5$. Let e_2 and ξ_2 denote the imaginary parts of e and ξ. Then we write

\[
e_2 = \int \frac{a(ace_2 \int \frac{b^2}{1 + c\xi} dF^B(b) + v)}{|a \int \frac{b}{1 + c\xi} dF^B(b) - \xi|} dF^A(a) = e_2\alpha + v\beta,
\]

and

\[
\xi_2 = \int \frac{a(ac \xi_2 \int \frac{b^2}{1 + c\xi} dF^B(b) + v)}{|a \int \frac{b}{1 + c\xi} dF^B(b) - \xi|} dF^A(a) = \xi_2\alpha + v\beta.
\]

By Cauchy-Schwarz inequality:

\[
|\gamma| \leq \int \left(\frac{ca^2 \int \frac{b^2}{1 + c\xi} dF^B(b) + v^2}{|a \int \frac{b}{1 + c\xi} dF^B(b) - \xi|^2} \right)^{1/2} \left(\frac{ca^2 \int \frac{b^2}{1 + c\xi} dF^B(b)}{|a \int \frac{b}{1 + c\xi} dF^B(b) - \xi|^2} \right)^{1/2} dF^A
\]

\[
\leq \left(\int \frac{ca^2 \int \frac{b^2}{1 + c\xi} dF^B(b)}{|a \int \frac{b}{1 + c\xi} dF^B(b) - \xi|^2} dF^A(a) \right)^{1/2} \left(\int \frac{ca^2 \int \frac{b^2}{1 + c\xi} dF^B(b)}{|a \int \frac{b}{1 + c\xi} dF^B(b) - \xi|^2} dF^A(a) \right)^{1/2}
\]

\[
= \left(\frac{e_2\alpha}{e_2\alpha + v\beta} \right)^{1/2} \left(\frac{\xi_2\alpha}{\xi_2\alpha + v\beta} \right)^{1/2}.
\]

Notice that for v small we have by Lemma 2(a)

\[
e_2\alpha/\beta \leq e_2c \int \frac{b^2}{1 + c\xi} dF^B(b) = -3 \int \frac{b}{1 + c\xi} dF^B \leq \frac{4c}{v}.
\]

Therefore

\[
\left(\int \frac{ca^2 \int \frac{b^2}{1 + c\xi} dF^B(b)}{|a \int \frac{b}{1 + c\xi} dF^B(b) - \xi|^2} dF^A(a) \right)^{1/2} = \left(\frac{e_2\alpha}{e_2\alpha + v\beta} \right)^{1/2}
\]

11
\[
\left(\frac{e_2 \alpha / \beta}{v + e_2 \alpha / \beta} \right)^{1/2} \leq \left(\frac{4c}{v^2 + 4c} \right)^{1/2} \leq 1 - Kv^2
\]
for \(v \) small, and for some positive constant \(K \). A corresponding bound obviously exists for the other factor making up the bound on \(\gamma \), so we conclude that for \(v \) small
\[
|\gamma| \leq 1 - Kv^2
\]
for some positive constant \(K \).

We see then that (15) and (16) together reveal two things: uniqueness of solutions to (2) (with \(F^A = F^A, F^B = F^B, \) and \(c = \bar{c} \)), and continuous dependence of solutions to (2) on \(F^A, F^B \) under the topology of weak convergence of probability measures (which follows from the DCT), and \(c \).

2.3 Bound on the difference between Stieltjes transforms

At this point on we assume that \(v_n = \kappa n^{-\delta} \) with \(\delta \in (0, 1/35] \), so that \(v_n \to 0 \) as \(n \to \infty \). The main goal in this subsection is to prove the following:

\[
\mathbb{P}(\max_{x \in S_n} v_n^{-1}|m_n - m_0^0| > \epsilon) \leq K_\epsilon \epsilon^{-t} n^{-\delta t/4} \quad \text{for} \quad t \geq 280. \tag{17}
\]

We have \(e_n^0 = e_n^0(z) \) (with \(z = x + iv \) where \(v > 0 \) is arbitrary) a unique solution to

\[
e = \int \frac{a}{1+c_n} \int \frac{b}{1+c_n} dF^B_n(b) - z dF^A_n(a). \tag{18}
\]

Let \(m_n^0 \) denote the Stieltjes transform of \(F_{c_n, A_n, B_n} \). Then,

\[
m_n^0 = m_n^0(z) = \int \frac{1}{a} \int \frac{b}{1+c_n} dF^B_n(b) - z dF^A_n(a). \tag{19}
\]

Let \(e_0^1, e_0^2, m_0^1, m_0^2 \) denote the imaginary parts of \(e_n^0, e_n^1, m_n^0, m_n^1 \), respectively. Also, let \(w_n^c \) and \(w_n^m \) be as defined earlier in Section 2.1. Then

\[
e_n^1 = \int \frac{a}{1+c_n} \int \frac{b^2}{1+c_n} dF^B_n(b) + v \left| a \int \frac{b}{1+c_n} dF^B_n(b) - z \right|^2 dF^A_n(a),
\]

\[
e_2 = \int \frac{a}{1+c_n} \int \frac{b^2}{1+c_n} dF^B_n(b) + v \left| a \int \frac{b}{1+c_n} dF^B_n(b) - z \right|^2 dF^A_n(a) + \Im w_n^c,
\]

\[
m_1^2 = \int \frac{a}{1+c_n} \int \frac{b^2}{1+c_n} dF^B_n(b) + v \left| a \int \frac{b}{1+c_n} dF^B_n(b) - z \right|^2 dF^A_n(a),
\]

\[
m_2 = \int \frac{a}{1+c_n} \int \frac{b^2}{1+c_n} dF^B_n(b) + v \left| a \int \frac{b}{1+c_n} dF^B_n(b) - z \right|^2 dF^A_n(a) + \Im w_n^m,
\]

and as above we have

\[
e_n - e_n^0 = (e_n - e_n^0) \gamma_n + w_n^c,
\]
where
\[
|\gamma_n| \leq \left(\int c_n a^2 \left[\frac{b^2}{1 + c_n b_n}\right] dF_{B_n}(b) \right)^{1/2} \left(\int c_n a^2 \left[\frac{b^2}{1 + c_n b_n}\right] dF_{A_n}(b) \right)^{1/2} \left(\int c_n a^2 \left[\frac{b^2}{1 + c_n b_n}\right] dF_{B_n}(b) \right)^{1/2} \left(\int c_n a^2 \left[\frac{b^2}{1 + c_n b_n}\right] dF_{A_n}(b) \right)^{1/2}.
\]

Using the argument leading up to (16), we have for small \(v > 0 \),
\[
\left(\int c_n a^2 \left[\frac{b^2}{1 + c_n b_n}\right] dF_{B_n}(b) \right)^{1/2} \leq \frac{4 c_n}{v^2 + 4 c_n} \leq 1 - K v^2
\]
for some positive constant \(K \).

Let \(\mu_n = n^{\delta/4} \). Therefore we have \(v_n \mu_n^3 \to 0 \). Let \(\lambda_{\text{max}} \) denote the largest eigenvalue of \((1/N)X_nX_n^*\), and let \(K_1 > (1 + \sqrt{c})^2 \). Since
\[
|\lambda - (x + iv_n)|^{-1} \leq \frac{3}{2} |x|^{-1}
\]
for fixed \(\lambda \) and \(|x| \) large, we have for all \(n \) large
\[
|e_n - e_n^0| \leq 3 \mu_n^{-1} v_n^3
\]
whenever \(|x| > \mu_n v_n^{-3} \) and \(\lambda_{\text{max}} \leq K_1 \). Notice that, since \(\max\{|e_n|, |e_n^0|\} \leq v_n^{-1} \text{tr} A_n \), whenever \((1/n)\text{tr} A_n \leq v_n^4 \mu_n^{-1} \) we have
\[
v_n^{-3} |e_n - e_n^0| \leq 2 v_n^{-4} (1/n) \text{tr} A_n \leq 2 \mu_n^{-1}.
\]

Now, let \(\alpha, \beta \) be such that \(e_2 = e_2 \alpha + v_n \beta + 3 w_n^e \). Then
\[
\int c_n a^2 \left[\frac{b^2}{1 + c_n b_n}\right] dF_{B_n}(b) \left[\frac{b^2}{1 + c_n b_n}\right] dF_{A_n}(b) - z \right]^2 dF_{A_n}(a) = \frac{e_2 \alpha}{e_2 \alpha + v_n \beta + 3 w_n^e}.
\]

Using Cauchy-Schwarz we have
\[
|e_n| \leq \beta^{1/2} ((1/n) \text{tr} A_n)^{1/2} + |w_n^e|.
\]

Next, as in Bai and Silverstein (1998) p. 329, for all \(n \) large \(|e_n| \geq \frac{1}{2} \mu_n^{-1} v_n^3 (1/n) \text{tr} A_n \) whenever \(|x| \leq \mu_n v_n^{-3} \) and \(\lambda_{\text{max}} \leq K_1 \). So, for all \(n \) large, whenever \(|x| \leq \mu_n v_n^{-3} \), \(|w_n^e| \leq v_n^{12} \), \(\lambda_{\text{max}} \leq K_1 \), and \((1/n)\text{tr} A_n > v_n^4 \mu_n^{-1} \) we have
\[
\frac{1}{2} \mu_n^{-1} v_n^3 (1/n) \text{tr} A_n \leq |e_n| \leq \beta^{1/2} ((1/n) \text{tr} A_n)^{1/2} + |w_n^e| \leq \beta^{1/2} ((1/n) \text{tr} A_n)^{1/2} + \mu_n v_n^8 (1/n) \text{tr} A_n.
\]

Therefore
\[
\frac{1}{2} \mu_n^{-1} v_n^3 (1/n) \text{tr} A_n \leq (1/n) \text{tr} A_n (\frac{1}{2} \mu_n^{-1} v_n^3 - \mu_n v_n^8) \leq \beta^{1/2} ((1/n) \text{tr} A_n)^{1/2},
\]
from which we get
\[
\beta \geq \frac{1}{9} v_n^{10} \mu_n^{-3}.
\]
Therefore
\[v_{n/\beta} + 3w_n^{\epsilon} \geq \frac{1}{9} v_n^{11/3} - v_n^{12} > 0, \]
and so
\[|e_n - e_n^0| \leq K^{-1}v_n^{-2}|w_n^{\epsilon}| \leq K^{-1}v_n^{10}. \]
Thus, combining this with (21) and (20), we have, for all n large
\[
\max_{x \in S_n} v_n^{-1} |e_n - e_n^0| \leq K^{-1}v_n^{-1} + 3\mu_n^{-1} + 2\mu_n^{-4} \max(1 + |w_n^{\epsilon}|^{1/2} + I_{|\lambda_{\max} > K_1}).
\]
Therefore, for these n, and for any positive ϵ and t we have
\[
\mathbb{P}(\max_{x \in S_n} v_n^{-1} |e_n - e_n^0| > \epsilon) \leq K_t\epsilon^{-t}(n^{-7\delta +\delta t/4} + v_n^{-dt}[\mathbb{P}(\max_{x \in S_n} |w_n^{\epsilon}|^{1/2} > 1) + \mathbb{P}(\lambda_{\max} > K_1)])
\]
\[
\leq K_t\epsilon^{-t}n^{-\delta t/4}, \tag{22}
\]
where the last step follows by replacing t with
\[\frac{17}{4} \delta t + 2 \]
in (14) and t with $\frac{17}{4} \delta t$ in Lemma 4. Taking the difference between m_n and m_n^0 and using Cauchy-Schwarz, we get
\[|m_n - m_n^0| \leq |e_n - e_n^0| \left(\int \frac{c_n \int \frac{b^2}{1+c_n b^{2\epsilon}_n} dF_B(b)}{\alpha \int \frac{b}{1+c_n b^{2\epsilon}_n} dF_B(b) - z} 2dF^{A}_n(a) \right)^{1/2} + |w_n^{\epsilon}|. \]

As before, we have the second factor on the right bounded above by 1, while by Lemma 2(a) the first factor is bounded above by $4e_n^{3/2}v_n^{-2}$. Therefore, for any positive ϵ and t we get from (14) and (22),
\[\mathbb{P}(\max_{x \in S_n} v_n^{-1} |m_n - m_n^0| > \epsilon) \leq \mathbb{P}(\max_{x \in S_n} v_n^{-1} |e_n - e_n^0| > \epsilon(2c_n^{1/2})^{-1}) + \mathbb{P}(\max_{x \in S_n} |w_n^{\epsilon}|^{1/2} > \epsilon/2) \leq K_t\epsilon^{-t} \max(n^{-\delta t/4}, n^{2-t(1/2-\delta)}). \tag{23} \]

Now it is easy to verify (17) from (23).

2.4 A rate on F^{C_n} outside the support

Let E_0 denote the expectation, and E_k denote the conditional expectation with respect to the σ-field generated by $\{y_1, \ldots, y_k\}$. Also, let $\epsilon > 0$ be such that $[a', b']$, with $a' = a - \epsilon$ and $b' = b + \epsilon$, also satisfy condition (f) of Theorem 1. The goal of this subsection is to prove the following bound:
\[\max_{k \leq N} \mathbb{E}_k(F^{C_n}([a', b']))^2 = o(v_n^2), \quad \text{a.s.} \tag{24} \]
Suppose that the n elements in S_n are equally spaced between $-\sqrt{n}$ and \sqrt{n}. Since, for $|x_1 - x_2| \leq 2n^{-1/2}$,
\[
|m_n(x_1 + iv_n) - m_n(x_2 + iv_n)| \leq 2n^{-1/2}v_n^{-2}
\]
and when $|x| \geq \sqrt{n}$, for n large enough, for K_1 as in Lemma 4,
\[
|m_n(x + iv_n)| \leq 2n^{-1/2} + v_n^{-1}I_{[\lambda_{\max}>K_1]}
\]
and
\[
|m_n^0(x + iv_n)| \leq 2n^{-1/2},
\]
Therefore, for all n
\[
\sup_{x \in \mathbb{R}} |m_n - m_n^0| \leq \max_{x \in \mathbb{R}} |m_n - m_n^0| + 4n^{-1/2}v_n^{-2} + v_n^{-1}I_{[\lambda_{\max}>K_1]},
\]
and hence we conclude from (17) and Lemma 4, that for these n, and for any $\epsilon > 0$ and $t \geq 280$, $0 < \delta \leq \frac{1}{35}$,
\[
\mathbb{P}(v_n^{-1}\sup_{x \in \mathbb{R}} |m_n - m_n^0| > \epsilon) \leq K_1\epsilon^{-t}(n^{-\delta t/4} + n^{-t(1/2-3\delta)}) \leq K_1\epsilon^{-t}n^{-\delta t/4}.
\] (25)
Since for any $r > 0$,
\[
\mathbb{E}_k(v_n^{-r}\sup_{x \in \mathbb{R}} |m_n(x + iv_n) - m_n^0(x + iv_n)|^r),
\]
for $k = 0, 1, \ldots, n$ forms a martingale, from Jensen’s inequality it follows that for any $t \geq 1$,
\[
(\mathbb{E}_k(v_n^{-r}\sup_{x \in \mathbb{R}} |m_n(x + iv_n) - m_n^0(x + iv_n)|^r))^t
\]
for $k = 0, 1, \ldots, n$ forms a submartingale. Therefore, from Lemma 2.5 and Lemma 2.6 of Bai and Silverstein (1998), and (25), for any $\epsilon > 0$, $t \geq 1$, and $r > 0$, so that $2rt \geq 280$, we have,
\[
\mathbb{P}(\max_{k \leq N}\mathbb{E}_k(v_n^{-r}\sup_{x \in \mathbb{R}} |m_n(x + iv_n) - m_n^0(x + iv_n)|^r) > \epsilon)
\]
\[
\leq \epsilon^{-t}\mathbb{E}(v_n^{-rt}\sup_{x \in \mathbb{R}} |m_n(x + iv_n) - m_n^0(x + iv_n)|^r)
\]
\[
\leq 2\epsilon^{-t}K_1^{1/2}n^{-\delta rt/4},
\] (26)
whenever $\delta \in (0, 1/35]$. From this, it follows that with probability 1,
\[
\max_{k \leq N}\mathbb{E}_k(v_n^{-r}\sup_{x \in \mathbb{R}} |m_n(x + iv_n) - m_n^0(x + iv_n)|^r) \rightarrow 0.
\] (27)
Let $\lambda_1 \geq \ldots \geq \lambda_n$ be the eigenvalues of C_n, and write
\[
m_{n} = m_{n}^{\text{out}} + m_{n}^{\text{in}}, \quad j = 1, 2,
\]
where $j = 1$ refers to the real part of m_n and $j = 2$ refers to the imaginary part of m_n, so that
\[
m_{n1}^{\text{out}}(x + iv_n) = \frac{1}{N} \sum_{\lambda_j \in [\nu', \nu]} \frac{v_n}{(x - \lambda_j)^2 + v_n^2},
\]
and
\[m_{n1}^m(x + iv) = \frac{1}{N} \sum_{\lambda_j \in [a', b']} \frac{x - \lambda_j}{(x - \lambda_j)^2 + v_n^2}. \]

Similarly, write \(m_{n1}^0 \) and \(m_{n2}^0 \) to mean the real and imaginary parts of \(m_n^m \). By (27), with probability 1, we have
\[\max_{k \leq N} \mathbb{E}_k(v_n^r \sup_{x \in \mathbb{R}} |m_{n2}(x + iv_n) - m_{n2}^0(x + iv_n)|^r) \to 0. \quad (28) \]

Define the sequence \(\{G_q\}_{q=1}^\infty \) of functions on \(\mathbb{R}^2 \) by
\[G_q^{\sum_{j=1}^{n-1}(N(j)+1)+k}(x_1, x_2) = \mathbb{E}_k F^{C_n}(x_1)F^{C_n}(x_2), \]
for \(k = 0, 1, 2, \ldots, N(n) \). Clearly, each \(G_q \) is a probability distribution function on \(\mathbb{R}^2 \). Also, for \(q = \sum_{j=1}^{n-1}(N(j)+1)+k \), the two-dimensional Stieltjes transform, \(m^{(G)}_q(x_1 + iv_1, x_2 + iv_2) \) of \(G_q \) is \(\mathbb{E}_k m(x_1 + iv_1)m(x_2 + iv_2) \). Notice \(x < 0, \lambda > 0 \) implies that
\[\left| \frac{1}{\lambda - (x + iv)} - \frac{1}{\lambda - x} \right| \leq \frac{v}{x^2}. \]

Therefore, from (27), we have with probability 1,
\[|m^{(G)}_q(x_1, x_2) - m_0^0(x_1)m_0^0(x_2)| \to 0, \quad \text{as} \quad q \to \infty, \]
for countably many negative \(x_1 \) having a negative limit point, and countably many negative \(x_2 \) also having a negative limit point.

It is straightforward to show the following: Assume that \(f(z_1, z_2) \) is a function of two complex variables, and analytic on a open rectangle \(E_1 \times E_2 \subset \mathbb{C}^2 \) (that is, for fixed \(z_1 \in E \ f(z_1, z_2) \) is analytic in \(z_2 \), and visa versa). Let \(\{z_1^n\} \subset E_1, \{z_2^n\} \subset E_2 \), where \(\{z_1^n\} \) has a limit point in \(E_1 \), \(\{z_2^n\} \) has a limit point in \(E_2 \). Then \(f \) is uniquely determined by the values it places on the set \(\{(z_1, z_2) : z_1 \in \{z_1^n\}, z_2 \in \{z_2^n\}\} \). This, together with the a.s. tightness of \(G_q \), gives us, with probability 1, \(G_q(y_1, y_2) \) converging weakly to \(F(y_1)F(y_2) \).

Notice that the integrands of
\[\int_{[a', b']^c \times [a', b']^c} \frac{d\mathbb{E}_k F^{C_n}(x_1)F^{C_n}(x_2)}{((x - x_1)^2 + v_n^2)((x - x_2)^2 + v_n^2)} \]
and
\[\int_{[a', b']^c} \frac{d\mathbb{E}_k F^{C_n}(x_1)}{(x - x_1)^2 + v_n^2} \]
on their respective domains are uniformly bounded and equicontinuous for \(x \in [a, b] \). Therefore, from Problem 8, p. 17, in Billingsley (1968), and using the fact that
\[\int_{a'}^{b'} \frac{v_n}{(x - u)^2 + v_n^2} dF^{C_n,A_n,B_n}(u) = 0 \quad \text{for all} \quad x \in \mathbb{R}, \]
the sequence \(\{g_q\}_{q=1}^\infty \) defined by
\[g_q = \sup_{x \in [a, b]} \mathbb{E}_k v_n^{-2} |m_{n2}(x + iv_n) - m_{n2}^0(x + iv_n)|^2 \]
16
for $q = \sum_{j=1}^{n-1} (N(j) + 1) + k$ (with $0 \leq k \leq N(n)$), converges to 0 a.s. as $n \to \infty$. Thus we have, a.s., $\max_{n \geq n_0} \max_{1 \leq k \leq N(n)} g_{\sum_{j=1}^{n-1} (N(j) + 1) + k} \to 0$, as $n_0 \to \infty$. This implies that

$$\max_{0 \leq k \leq N} \sup_{x \in [a, b]} \mathbb{E}_k v_n^{-2} |m_{n2}(x + iv_n) - m_{n2}^0(x + iv_n)|^2 \to 0 \text{ a.s.}$$

This, together with (28), implies that

$$\sup_{x \in [a, b]} \max_{k \leq N} v_n^{-2} \mathbb{E}_k (m_{n2}^\text{out}(x + iv_n))^2 \to 0. \quad (29)$$

Now, for any $x \in [a, b]$, we have

$$v_n^{-1} m_{n2}^\text{out}(x + iv_n) \geq \int_a^b \frac{1}{(u - x)^2 + v_n^2} dF_{C_n}(u) \geq \int_{[a, b] \cap [x - v_n, x + v_n]} \frac{1}{(u - x)^2 + v_n^2} dF_{C_n}(u) \geq \frac{1}{2v_n^2} F_{C_n}([a, b] \cap [x - v_n, x + v_n]).$$

We select $x_j \in [a, b]$, $j = 1, \ldots, J$, such that $v_n < x_j - x_{j-1}$, and $[a, b] \subset \bigcup_{j=1}^J [x_j - v_n, x_j + v_n]$. Notice that, as a consequence, $J \leq (b - a) v_n^{-1}$. Then from the inequality above, it follows that, with probability 1,

$$v_n^{-2} \max_{k \leq N} \mathbb{E}_k (F_{C_n}^\text{out}([a, b]))^2 \leq v_n^{-2} \max_{k \leq N} \mathbb{E}_k \left(\sum_{j=1}^J F_{C_n}([a, b] \cap [x_j - v_n, x_j + v_n])^2 \right) \leq v_n^{-2} \max_{k \leq N} \mathbb{E}_k \left(\sum_{j=1}^J 2v_n m_{n2}^\text{out}(x_j + iv_n)^2 \right) \leq 4J \max_{k \leq N} \sum_{j=1}^J \mathbb{E}_k (m_{n2}^\text{out}(x_j + iv_n))^2, \text{ by H"older's inequality} \leq 4J^2 \max_{1 \leq j \leq J} \max_{k \leq N} \mathbb{E}_k (m_{n2}^\text{out}(x_j + iv_n))^2 \leq 4(b - a)^2 v_n^{-2} \sup_{x \in [a, b]} \max_{k \leq N} \mathbb{E}_k (m_{n2}^\text{out}(x + iv_n))^2 \to 0,$$

by (29).

This shows that

$$\max_{k \leq N} \mathbb{E}_k (F_{C_n}([a, b]))^2 = o(v_n^2), \text{ a.s.}$$

Clearly, the same argument holds for $[a', b']$ replacing $[a, b]$, and so we have (24). Now, taking $\delta = 1/35$, from (24) we get,

$$\max_{k \leq N} \mathbb{E}_k (F_{C_n}([a', b']))^2 = o(N^{-2/35}) \text{ a.s.} \quad (30)$$

17
3 Convergence of $m_n - \mathbb{E}m_n$

Throughout the rest of the paper we take $v_n = \kappa n^{-\delta}$ with $\delta = \frac{1}{10}$, and some constant $\kappa > 0$. In this section, we verify (7). Since for real $x_1, x_2, |m_n(x_1 + iv_n) - m_n(x_2 + iv_n)| \leq |x_1 - x_2|v_n^{-2}$ (and from this, the same bound holds for $|\mathbb{E}m_n(x_1 + iv_n) - \mathbb{E}m_n(x_2 + iv_n)|$), we can prove (7) if we prove that

$$\max_{x \in S_n} N v_n |m_n(x + iv_n) - \mathbb{E}m_n(x + iv_n)| \to 0, \quad \text{a.s. as } n \to \infty, \quad (31)$$

for the set S_n consisting of n^2 points equally spaced in $[a,b]$.

Write $D = C_n - z I$, $D_j = D - b_j y_j y_j^*$ (where $y_j = \frac{1}{\sqrt{N}} A_n^{1/2}X_j$, and $D_{jj'} = D_j - b_j y_j y_{j'}^*$, for $j' \neq j$). Note that $D_j = C_{(j)} - z I$. Then, $m_n = \frac{1}{\pi} \text{tr} D^{-1}$. Also, let $\mathcal{D} = C_n - z I$, where z is the complex conjugate of z. Note that $\mathcal{D} = D^*$. Also, let

$$\alpha_j = y_j^* D_j^{-2} y_j - \frac{1}{N} \text{tr} (D_j^{-2} A_n), \quad a_j = \frac{1}{N} \text{tr} (D_j^{-2} A_n),$$

$$\beta_j = \frac{1}{1 + b_j y_j^* D_j^{-1} y_j}, \quad \hat{b}_j = \frac{1}{1 + b_j \frac{1}{n} \mathbb{E} [\text{tr} (D_j^{-1} A_n)]},$$

$$\gamma_j = y_j^* D_j^{-1} y_j - \frac{1}{N} \mathbb{E} [\text{tr} (D_j^{-1} A_n)], \quad \hat{\gamma}_j = y_j^* D_j^{-1} y_j - \frac{1}{N} \text{tr} (D_j^{-1} A_n).$$

We first derive bounds for the moments of γ_j and $\hat{\gamma}_j$. Integrating first with respect to X_j, that is, conditioning on the set $\{X_i : j \neq i\}$, and using Lemma 3, for all $p \geq 2$,

$$\mathbb{E} |\hat{\gamma}_j|^p \leq K_p N^{-p/2} \mathbb{E} [\text{tr} (A_n^{1/2} D_j^{-1} A_n D_j^{-1} A_n^{1/2})]^p \leq K_p N^{-p/2} v_n^{-p}, \quad (32)$$

where the last step follows from the fact that $\| D_j^{-1} \| \leq v_n^{-1}$, and that $\| A_n \| \leq 1$.

Now, using the fact that $(\mathbb{E}_j - \mathbb{E}_{j-1})[f_n(X_1, \ldots , X_N)]$ (for any bounded f_n) forms a martingale difference sequence w.r.t. the sigma-fields \mathcal{F}_j, generated by columns $\{X_1, \ldots , X_{(j-1)}\}$, and that $\mathbb{E}_0 [\text{tr} (D_j^{-1} A_n)] = \mathbb{E} [\text{tr} (D_j^{-1} A_n)]$, and $\mathbb{E}_N [\text{tr} (D_j^{-1} A_n)] = \text{tr} (D_j^{-1} A_n)$, from Burkholder’s inequality (Lemma 2.2 in Bai and Silverstein (1998))

$$\mathbb{E} |\gamma_j - \hat{\gamma}_j|^p = N^{-p} \mathbb{E} \left| \sum_{j' \neq j} (\mathbb{E}_{j'} - \mathbb{E}_{j'-1}) [\text{tr} (D_j^{-1} A_n)] \right|^p$$

$$= N^{-p} \mathbb{E} \left| \sum_{j' \neq j} \left[\mathbb{E}_{j'} [\text{tr} (D_j^{-1} - D_{jj'}^{-1}) A_n] - \mathbb{E}_{j'-1} [\text{tr} (D_j^{-1} - D_{jj'}^{-1}) A_n] \right] \right|^p$$

$$= N^{-p} \mathbb{E} \left| \sum_{j' \neq j} (\mathbb{E}_{j'} - \mathbb{E}_{j'-1}) \left[b_{jj'} y_j^* D_j^{-1} A_n D_{jj'}^{-1} y_j \left(\frac{1}{1 + b_j y_j^* D_{jj'}^{-1} y_j} \right) \right]^p \right|^p$$

$$\leq K_p N^{-p} \left(\sum_{j' \neq j} (\mathbb{E}_{j'} - \mathbb{E}_{j'-1}) \left[b_{jj'} y_j^* D_j^{-1} A_n D_{jj'}^{-1} y_j \left(\frac{1}{1 + b_j y_j^* D_{jj'}^{-1} y_j} \right) \right]^2 \right)^{p/2}$$

$$\leq K_p N^{-p/2} \mathbb{E} |\gamma_j|^p,$$ \quad (33)

where in the last step we use Lemma 2.10 of Bai and Silverstein (1998) to bound the term within conditional expectations by $\| A_n \| v_n^{-1} \leq v_n^{-1}$.
Therefore, from (32) and (33) it follows that for any \(p \geq 2 \),

\[
\mathbb{E}|\gamma_j|^p \leq K_p N^{-p/2} v_n^{-p}. \tag{34}
\]

Next, we write

\[
m_n - \hat{E}m_n = \frac{1}{n} \sum_{j=1}^{N} (\mathbb{E}_j - \mathbb{E}_{j-1})[\text{tr}(D^{-1})]
\]

\[
= -\frac{1}{n} \sum_{j=1}^{N} (\mathbb{E}_j - \mathbb{E}_{j-1}) \left[b_j \frac{y_j^2 D_j^{2} y_j}{1 + b_j y_j^2 D_j^{-1} y_j} \right] \quad \text{(since } \mathbb{E}_j \text{tr}(D_j^{-1}) = \mathbb{E}_{j-1} \text{tr}(D_j^{-1}))
\]

\[
= -\frac{1}{n} \sum_{j=1}^{N} (\mathbb{E}_j - \mathbb{E}_{j-1}) \left[b_j \frac{y_j^2 D_j^{-2} y_j}{1 + b_j \frac{1}{N} \mathbb{E}[\text{tr}(D_j^{-1} A_n)]} \right]
\]

\[
+ \frac{1}{n} \sum_{j=1}^{N} (\mathbb{E}_j - \mathbb{E}_{j-1}) \left[b_j^2 y_j^2 D_j^{-2} y_j (y_j^2 D_j^{-1} y_j - \frac{1}{N} \mathbb{E}[\text{tr}(D_j^{-1} A_n)]) \right]
\]

\[
= -\frac{1}{n} \sum_{j=1}^{N} b_j \hat{b}_j \mathbb{E}_j \alpha_j + \frac{1}{n} \sum_{j=1}^{N} b_j^2 \hat{b}_j^2 \mathbb{E}_j \alpha_j \gamma_j
\]

\[
+ \frac{1}{n} \sum_{j=1}^{N} b_j^2 \hat{b}_j^2 (\mathbb{E}_j - \mathbb{E}_{j-1})(\alpha_j \gamma_j - b_j y_j^2 D_j^{-2} y_j \beta_j \gamma_j^2)
\]

\[
= W_1 + W_2 + W_3. \tag{35}
\]

3.1 Boundedness of \(\hat{b}_j \)

Let

\[
p_n \propto -\frac{1}{z} \int \frac{b}{1 + c_n b \mathbb{E}_n} dF^{B_n}(b) \quad \text{and} \quad \hat{p}_n = -\frac{1}{z} \int \frac{b}{1 + c_n b \mathbb{E}(c_n)} dF^{B_n}(b).
\]

We have

\[
m_n \propto -\frac{1}{z} \int \frac{a p_n^0}{a p_n^0 + 1} dF^{A_n}(a), \quad \text{and} \quad e_n \propto -\frac{1}{z} \int \frac{a}{a p_n^0 + 1} dF^{A_n}(a). \tag{36}
\]

We have then

\[
e_n = -\frac{1}{z} \frac{1}{p_n^0} \int \frac{a p_n^0 + 1 - 1}{a p_n^0 + 1} dF^{A_n}(a) = -\frac{1}{z p_n^0} \frac{m_n}{p_n^0}.
\]

Therefore

\[
e_n^0 p_n^0 = -\frac{1}{z} - m_n^0.
\]

Suppose \(z = z_j \in \mathbb{C}^+ \rightarrow x \in [a', b'] \) as \(j \rightarrow \infty \). Then

\[
e_n^0(z) p_n^0(z) \rightarrow -\frac{1}{x} - m_n^0(x) \in \mathbb{R}.
\]

We see that both \(\{p_n^0(z_j)\} \) and \(\{e_n^0(z_j)\} \) remain bounded, since if, say \(e_n^0 \) goes unbounded on some subsequence, \(p_n^0 \) would tend to zero on that subsequence, and from (36) it will render \(e_n^0 \) converging...
to a finite number, a contradiction. Since $\Im m_n^0(x) = 0$, we must have $\lim_{j \to \infty} \Im p_n^0(z_j) = 0$. This in turn implies $\lim_{j \to \infty} \Im e_n^0(z_j) = 0$ as well. Therefore, the measures defining p_n^0 and e_n^0 have derivative 0 for each $x \in [a', b']$, so that (a', b') is outside the support of both these measures, which after considering a slightly larger ε, this statement extends to $[a', b']$.

From continuity, we have $e_n^0(z) \to e^0(z)$, and consequently, $m_n^0 \to m^0(z)$, and $p_n^0(z) \to p^0(z)$, e_n^0, m_n^0, p^0 defined for the limiting empirical distribution, for all $z \in \mathbb{C}^+ \cup (a', b']$. We must have $[-1/p_n^0(a'), -1/p_n^0(b')]$ not intersecting with any of the eigenvalues of A_n (respectively, $[-1/p^0(a')$, $-1/p^0(b')]$ not intersecting with the support of F^A). Therefore, since $p_n^0(x) \to p^0(x)$, for $x = a', a, b, b'$, and $p^0(a') < p^0(a) < p^0(b) < p^0(b')$, we must have $-1/p_n^0(x)$ uniformly bounded away from the eigenvalues of A_n for all $z = x + iv$, $x \in [a, b]$, and for $v \in [0, v_0]$ for some positive v_0.

Similarly, $-1/(e_n e_n^0)$ is uniformly bounded away from the eigenvalues of B_n for all $z = x + iv$, $x \in [a, b], v \in [0, v_0]$. Therefore, using (22) and arguments analogous to those leading to (27) (now applied to e_n instead of m_n), we have, with $z = x + iv_n$

$$\sup_{x \in [a, b]} |\hat{p}_n(z) - p_n^0(z)| = \sup_{x \in [a, b]} |e_n^0(z) - \mathbb{E}(e_n(z))| \frac{c_n}{|z|} \int \frac{b^2}{(1 + c_n b^2 + n e_n^0) (1 + c_n b e_n^0) dF^B_n(b)}$$

$$\leq \sup_{x \in \mathbb{R}} K \frac{|e_n^0(z) - \mathbb{E}(e_n(z))|}{\mathbb{E}(e_n^0)} \leq K \mathbb{E}(e_n^0) \sup_{x \in \mathbb{R}} |e_n^0(z) - \mathbb{E}(e_n(z))| \to 0$$

as $n \to \infty$. Thus we conclude

$$\sup_{x \in [a, b]} \| (I + \hat{p}_n(z) A_n)^{-1} \| \leq K,$$ \hspace{1cm} (37)

and

$$\max_{j \leq N} \sup_{x \in [a, b]} \frac{1}{|1 + c_n b_j e_n(z)|} \leq K.$$ \hspace{1cm} (38)

Let for $j \neq j', n$,

$$b_j = \frac{1}{1 + c_n b_j n^{-1} \mathbb{E} tr (A_n D_j^{-1})} \quad \text{and} \quad b_{j'} = \frac{1}{1 + c_n b_{j'} n^{-1} \mathbb{E} (\mathbb{E} tr (A_n D_{j'}^{-1}))}.$$

From Lemma 1

$$|(1/n) \mathbb{E} tr (A_n D_j^{-1}) - e_n| \leq (nv_n)^{-1} \quad \text{and} \quad |(1/n) \mathbb{E} tr (A_n D_{j'}^{-1}) - e_n| \leq 2(nv_n)^{-1},$$

so that from (38) we also have for all n large

$$\max_{j \leq N} \sup_{x \in [a, b]} (|b_j|, \max_{j \neq j'} |b_{j'}|) \leq K.$$ \hspace{1cm} (39)

3.2 Bounds on W_1, W_2, W_3

Let F_{nj} be the spectral distribution of the matrix $\sum_{k \neq j} b_k y_k y_k^*$. From Lemma 2.12 of Bai and Silverstein (1998), and (30), we get

$$\max_j \mathbb{E}_j(F_{nj}([a', b']))^2 = o(v_n^8) = o(N^{-2/35}), \quad \text{a.s.}$$ \hspace{1cm} (40)

Define

$$B_j = I_{[\mathbb{E}_j F_{nj}([a', b']) \leq v_n^4] \cap [\mathbb{E}_{j-1}(F_{nj}([a', b']))^2 \leq v_n^8]}.$$

20
Note that, $B_j = I_{[\mathbb{E}_j F_{n_j}([a',b']) \leq v_n^a]} \cap [\mathbb{E}_j (F_{n_j}([a',b']))^2 \leq v_n^b]$ a.s., and we have
\[\mathbb{P}(\bigcup_{j=1}^N [B_j = 0] \text{ i.o.}) = 0. \]

Therefore, for any $\varepsilon > 0$,
\[
\mathbb{P} \left(\max_{x \in S_n} |Nv_n W_x| > \varepsilon \text{ i.o.} \right) \\
\leq \mathbb{P} \left(\left[\max_{x \in S_n} \left| \sum_{j=1}^N \mathbb{E}_j(\alpha_j) B_j \right| > \varepsilon \right] \cap [B_j = 1] \right) \cup \left(\bigcup_{j=1}^N [B_j = 0] \right) \text{ i.o.} \\
\leq \mathbb{P} \left(\max_{x \in S_n} \left| \sum_{j=1}^N \mathbb{E}_j(\alpha_j) B_j \right| > \varepsilon \text{ i.o.} \right),
\]

where $\varepsilon = \inf_n n\varepsilon / (N \max_{1 \leq j \leq N} |b_j|) > 0$, since $\max_{1 \leq j \leq N} |b_j| \leq 1$, and $\max_{1 \leq j \leq N} \sup_{x \in [a,b]} |\hat{b}_j|$ is bounded for all n (by (39)). Note that, for each $x \in \mathbb{R}$, $\{\mathbb{E}_j(\alpha_j) B_j\}$ forms a martingale difference sequence.

By Lemma 2.1 in Bai and Silverstein (1998), and Lemma 3, for each $x \in [a, b]$, and $p \geq 2$,
\[
\mathbb{E} \left| \sum_{j=1}^N \mathbb{E}_j(\alpha_j) B_j \right|^p \\
\leq K_p \left(\mathbb{E} \left(\sum_{j=1}^N \mathbb{E}_{j-1} \left| v_n \mathbb{E}_j(\alpha_j) B_j \right|^2 \right)^{p/2} + \sum_{j=1}^N \mathbb{E} |v_n \mathbb{E}_j(\alpha_j) B_j|^p \right) \\
\leq K_p \left(\mathbb{E} \left(\sum_{j=1}^N v_n^2 N^{-2} B_j \operatorname{tr} \left(A_n^{1/2} D_j^{-2} A_n^{-1/2} \right) \right)^{p/2} + v_n^p \sum_{j=1}^N \mathbb{E} |\alpha_j|^p \right) \\
\leq K_p v_n^p N^{-p} \mathbb{E} \left(\sum_{j=1}^N B_j \mathbb{E}_{j-1} \operatorname{tr} \left(D_j^{-2} D_j^{-2} \right) \right)^{p/2} \quad (\text{since } \| A_n \| \leq 1) \\
+ K_p v_n^p N^{-p} \sum_{j=1}^N \mathbb{E} \left(\operatorname{tr} \left(A_n^{1/2} D_j^{-2} A_n^{-1/2} \right) \right)^{p/2} \quad (\text{by Lemma 3}) \\
\leq K_p \left(v_n^p N^{-p} \mathbb{E} \left(\sum_{j=1}^N B_j \mathbb{E}_{j-1} \operatorname{tr} \left(D_j^{-2} D_j^{-2} \right) \right)^{p/2} + v_n^{-p} N^{1-p/2} \right),
\]
since $\max_j \| D_j^{-1} \| \leq v_n^{-1}$ and $\| A_n \| \leq 1$.

21
Let λ_{kj} denote the k-th smallest eigenvalue of $\sum_{k' \neq k} b_{k'} y_{k'} y_{k'}^*$. We have, for $x \in [a, b]$

$$\sum_{j=1}^{N} B_j E_j - 1 \text{tr} \left(D_j^{-2} \bar{D}_j^{-2} \right)$$

$$= \sum_{j=1}^{N} B_j E_j - 1 \left[\sum_{\lambda_{kj} \notin [a', b']} \frac{1}{(\lambda_{kj} - x)^2 + v_n^2} + \sum_{\lambda_{kj} \in [a', b']} \frac{1}{(\lambda_{kj} - x)^2 + v_n^2} \right]$$

$$\leq \sum_{j=1}^{N} (n x^{-4} + B_j v_n^{-4} n E_j F_n_j([a', b']))$$

$$\leq K N^2. \tag{41}$$

Here the last step follows from (40).

Therefore, for $p \geq \frac{70}{34}$,

$$\mathbb{P} \left(\max_{x \in S_n} \left| v_n \sum_{j=1}^{N} E_j (a_j) B_j \right| > \varepsilon \right) \leq K_p \varepsilon n^2 N^{-p/140},$$

which is summable when $p > 420$. Therefore, by Borel-Cantelli lemma,

$$\max_{x \in S_n} |W_1| = o(1/N v_n) \text{ a.s.} \tag{42}$$

Next we prove

$$\max_{x \in S_n} |W_2| = o(1/N v_n) \text{ a.s.} \tag{43}$$

by following similar arguments. First, observing that $\{E_j (a_j \gamma_j) B_j\}$ forms a martingale difference sequence, and using Lemma 2.1 of Bai and Silverstein (1998), Lemmas 1 and 3, and the fact that $|a_j| \leq \frac{n}{N} v_n^{-2}$, we have,

$$\mathbb{E} \left| v_n \sum_{j=1}^{N} E_j (a_j \gamma_j) B_j \right|^p$$

$$\leq K_p \left(\mathbb{E} \left(\sum_{j=1}^{N} |E_{j-1}| v_n E_j (a_j \gamma_j) B_j|^2 \right)^{p/2} + \sum_{j=1}^{N} \mathbb{E} |v_n E_j (a_j \gamma_j) B_j|^p \right)$$

$$\leq K_p v_n^p N^{-p} \mathbb{E} \left(\sum_{j=1}^{N} B_j E_{j-1} (|a_j|^2 \text{tr} (D_j^{-1} \bar{D}_j^{-1})) \right)^{p/2} \tag{by Lemma 3}$$

$$+ K_p v_n^{-p} N^{-p} \sum_{j=1}^{N} \left(\text{tr} (D_j^{-1} \bar{D}_j^{-1}) \right)^{p/2} \tag{by Lemma 3, and since max \text{ } a_j \leq \frac{n}{N} v_n^{-2}}$$

$$\leq K_p \left(v_n^p N^{-p} \mathbb{E} \left(\sum_{j=1}^{N} B_j E_{j-1} (|a_j|^2 \text{tr} (D_j^{-1} \bar{D}_j^{-1})) \right)^{p/2} + v_n^{-2p} N^{1-p/2} \right),$$

22
In this section we prove (8). Recall the definitions of 4 Convergence of expected value
Hence, (31), and consequently, (7), follow from (42), (43) and (45).
Thus, using arguments as in the proof of (42) and (43), we get
Using Lemma 2.2 of Bai and Silverstein (1998) followed by Hölder’s inequality, we have
Since $\max_j \| D_j^{-1} \| \leq v_n^{-1}$, so that $\max_j \| \| D_j^{-1} \| \delta_j^{-1} \) \leq n v_n^{-2}$.
Moreover, using same notation as before, the fact that $\| A_n \| \leq 1$, and arguing as in the derivation of (41), we have
\[
\sum_{j=1}^{N} B_j E_{j-1}(|a_j|^2 \text{tr} (D_j D_j^{-1}))
\leq \sum_{j=1}^{N} B_j E_{j-1}N^{-2}n \left[\sum_k \frac{1}{((\lambda_{kj} - x)^2 + v_n^2)} \right] \left[\sum_k \frac{1}{(\lambda_{kj} - x)^2 + v_n^2} \right],
\]
(by Cauchy-Schwarz applied to $|a_j|^2$)
\[
\leq \sum_{j=1}^{N} B_j N^{-2}nE_{j-1}(n_n^{-4} + v_n^{-4}nF_{nj}([a', b']))(n_n^{-2} + v_n^{-2}nF_{nj}([a', b']))
\leq KN^2.
\]
Since $\max_j \max\{ b_j, \sup_{x \in [a, b]} |\hat{b}_j| \}$ is bounded, for large enough n, we have (43) by arguments similar to the ones used already in the derivation of (42).
Note that, Lemma 1 implies that
\[
\max_j \sup_{x \in [a, b]} |b_j y_j^* D_j^{-2} y_j \beta_j| = \max_j \sup_{x \in [a, b]} \left| \frac{b_j y_j^* D_j^{-2} y_j}{1 + b_j y_j^* D_j^{-1} y_j} \right| \leq \frac{1}{v_n}.
\] (44)
Using Lemma 2.2 of Bai and Silverstein (1998) followed by Hölder’s inequality, we have
\[
\left| v_n \left(\sum_{j=1}^{N} (E_j - E_{j-1})(\alpha_j \gamma_j - b_j y_j^* D_j^{-2} y_j \beta_j \gamma_j^2) \right)^p \right|
\leq K_p v_n^p N^{p/2-1} \sum_{j=1}^{N} \left(|E| \alpha_j \gamma_j |^p + v_n^{-p} |E| \gamma_j |^{2p} \right) \quad (by \ (44))
\leq K_p v_n^p N^{p/2-1} \sum_{j=1}^{N} \left(N^{-p} \left(E(\text{tr} (D_j^{-2} D_j^{-2}))p \right)^{1/2} + N^{-p/2} v_n^{-p} + v_n^{-3p} N^{-p} \right)
\leq K_p v_n^p N^{p/2} (N^{-p} N^{p/2} v_n^{-2p} N^{-p/2} v_n^{-p} + v_n^{-3p} N^{-p}) \quad (since \ || D_j^{-1} || \leq v_n^{-1})
\leq K_p v_n^{-2p} N^{-p/2}.
\]
Thus, using arguments as in the proof of (42) and (43), we get
\[
\max_{x \in S_n} |W_3| = o(1/Nv_n).
\] (45)
Hence, (31), and consequently, (7), follow from (42), (43) and (45).

4 Convergence of expected value
In this section we prove (8). Recall the definitions of D, D_j and $D_j=\hat{j}$ from Section 3. Also, let
\[
\beta_{\hat{j}} = \frac{1}{1 + b_j y_j^* D_j^{-1} y_j}.
\]
For \(j \neq j \leq N \) let \(\lambda_{kj} \) denote the \(k \)-th smallest eigenvalue of \(D_{jj} \), and let \(F_{nj} \) denote the empirical distribution function of this matrix. Using (40) and Lemma 2.12 of Bai and Silverstein (1998) we get

\[
\max_{j \neq \frac{1}{2}} \mathbb{E}(F_{nj}[a', b'])^2 = o(v_n^8).
\]

Therefore

\[
\max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}(\text{tr} \ D_j^{-1} D_j^{-1})^2 = \max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}\left(\sum_{\lambda_{kj} \notin [a', b']} \frac{1}{(\lambda_{kj} - x)^2 + v_n^2} + \sum_{\lambda_{kj} \in [a', b']} \frac{1}{(\lambda_{kj} - x)^2 + v_n^2} \right)^2
\]

\[
\leq \max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}(n_{x}^{-2} + v_n^{-2}n_{F_{nj}}([a', b']))^2 \leq Kn^2,
\]

and, \(\max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}(\text{tr} \ D_j^{-2} D_j^{-2})^2 \leq \max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}(n_{x}^{-4} + v_n^{-4}n_{F_{nj}}([a', b']))^2 \leq Kn^2. \)

The latter implies of course

\[
\max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}\text{tr} \ D_j^{-2} D_j^{-2} \leq Kn.
\]

Similarly,

\[
\max_{j \neq \frac{1}{2}} \sup_{x \in [a, b]} \mathbb{E}(\text{tr} \ D_j^{-1} D_j^{-1})^2 \leq Kn^2, \quad \text{and} \quad \max_{j \neq \frac{1}{2}} \sup_{x \in [a, b]} \mathbb{E}(\text{tr} \ D_j^{-2} D_j^{-2})^2 \leq Kn.
\]

Moreover

\[
\max_{j \neq \frac{1}{2}} \sup_{x \in [a, b]} \mathbb{E}(\text{tr} \ D_j^{-1} D_j^{-1})^4 \leq \mathbb{E}(n_{x}^{-2} + v_n^{-2}n_{F_{nj}}([a', b']))^4 \leq Kn^4(\varepsilon^{-8} + v_n^{-8}\mathbb{E}(F_{nj}([a', b']))^2) \leq Kn^4.
\]

Write

\[
C_n - zI + z\hat{p}_n A_n = \sum_{j=1}^{N} b_j y_j y_j^* + z\hat{p}_n A_n.
\]

Taking first inverses and then expected values we have

\[
\mathbb{E}(C_n - zI)^{-1} + (zI + z\hat{p}_n A_n)^{-1}
\]

\[
= \mathbb{E} \left[\sum_{j=1}^{N} b_j (C_n - zI)^{-1} y_j y_j^* (zI + z\hat{p}_n A_n)^{-1} + z\hat{p}_n D^{-1} A_n (zI + z\hat{p}_n A_n)^{-1} \right]
\]

\[
= \sum_{j=1}^{N} b_j \left[\mathbb{E}\left(C_{(j)} - zI \right)^{-1} y_j y_j^* (zI + z\hat{p}_n A_n)^{-1} + \frac{1}{1 + b_j y_j^* D^{-1} y_j} \left(\mathbb{E}(C_n - zI)^{-1} A_n (I + \hat{p}_n A_n)^{-1} \right) \right].
\]

Taking the trace on both sides and dividing by \(n \) we have

\[
\mathbb{E}(m_n(z)) - \int a \frac{b}{1 + b \mathbb{E}(e_n)} dF_{B_n}(b) - z \frac{1}{z N} \sum_{j=1}^{N} b_j \hat{d}_j \equiv \hat{w}_n^m,
\]

where

\[
\hat{d}_j = \mathbb{E}[\beta_j (1/n) X_j^* A_n^{1/2} (I + \hat{p}_n A_n)^{-1} D_j^{-1} A_n^{1/2} X_j] - \frac{(1/n) \text{tr} \mathbb{E}[D_n^{-1} A_n (I + \hat{p}_n A_n)^{-1}]}{(1 + c_n b_j \mathbb{E}(e_n))}.
\]

24
Multiplying both sides of the above matrix identity by A_n, and then taking traces and dividing by n, we find

$$
\mathbb{E}(e_n(z)) - \int a \int b \frac{dF^B_n(b)}{1+c_n b \mathbb{E}(e_n)} dF^A_n(a) = \frac{1}{zN} \sum_{j=1}^N b_j \hat{d}_j \equiv \hat{\omega}_n^c,
$$

where

$$
\hat{d}_j = \mathbb{E}[\beta_j (1/n) X_j^* A_n^{1/2}(I + \hat{p}_n A_n)^{-1} A_n D_j^{-1} A_n^{1/2} X_j] - \frac{(1/n) \text{tr} A_n \mathbb{E}[D^{-1}] A_n(I + \hat{p}_n A_n)^{-1}}{(1 + c_n b_j \mathbb{E}(e_n))}.
$$

Again, we let E_n denote either A_n or I_n. We first show that

$$
n^{-1} \max_{j \leq N} \sup_{x \in [a, b]} |(\text{tr} E_n \mathbb{E}[D^{-1}] A_n(I + \hat{p}_n A_n)^{-1} - \text{tr} E_n \mathbb{E}[D^{-1}] A_n(I + \hat{p}_n A_n)^{-1}| = O(n^{-1}). \tag{46}
$$

Using $\beta_j = \hat{b}_j - b_j \hat{b}_j \gamma_j$, (3.3) of Bai and Silverstein (1998), (34), (37), and (39) we conclude that the left hand side of (46) becomes

$$
= n^{-1} \max_{j \leq N} \sup_{x \in [a, b]} |\mathbb{E}[\beta_j y_j^* D_j^{-1} A_n(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} y_j]| \leq n^{-1} \max_{j \leq N} \sup_{x \in [a, b]} (|\hat{b}_j| |\mathbb{E}[y_j^* D_j^{-1} A_n(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} y_j]|) + v_n^{-1}(\mathbb{E} |\gamma_j|^2)^{1/2}(\mathbb{E}|y_j^* D_j^{-1} A_n(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} y_j|^2)^{1/2} \leq Kn^{-1} \max_{j \leq N} \sup_{x \in [a, b]} (|\mathbb{E}[\text{tr} D_j^{-1} D_j^{-1}]| + v_n^{-1} N^{-1/2} v_n^{-1} (\mathbb{E}|D_j^{-2} D_j^{-1}|^2 + \mathbb{E}|D_j^{-1} D_j^{-1}|^2)^{1/2} \leq Kn^{-1}.
$$

Thus (46) holds.

From Lemma 3 and (37) we get

$$
\max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}[(1/n) x_j^* A_n^{1/2}(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} A_n^{1/2} x_j - (1/n) \text{tr} E_n D_j^{-1} A_n(I + \hat{p}_n A_n)^{-1}]^2 \leq Kn^{-2} \max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}[\text{tr} D_j^{-1} D_j^{-1}] \leq Kn^{-1}. \tag{47}
$$

We next show

$$
\max_{j \leq N} n^{-2} \mathbb{E}[(\text{tr} E_n D_j^{-1} A_n(I + \hat{p}_n A_n)^{-1} - \text{tr} E_n \mathbb{E}[D_j^{-1}] A_n(I + \hat{p}_n A_n)^{-1}]^2 \leq Kn^{-1}. \tag{48}
$$

Using (3.3) of Bai and Silverstein (1998), and the fact that $\beta_{j_2} = \hat{b}_{j_2} - b_{j_2} \hat{b}_{j_2} \gamma_{j_2}$, the left hand
side of (48) becomes

\[
\max_{j \leq N} \sup_{x \in [a, b]} n^{-2} \sum_{j \neq j'} \mathbb{E}((E_j - E_{j-1}) \text{tr} E_n D_j^{-1} A_n(I + \hat{p}_n A_n)^{-1} | y_j^2)
\]

\[
\leq 2 \max_{j \leq N} \sup_{x \in [a, b]} n^{-2} \sum_{j \neq j'} b^2 \mathbb{E}|(\hat{b}_{jj} - b_{jj} - b_{jj}^2) | D_j A_n(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} y_j^2
\]

\[
= 2 \max_{j \leq N} \sup_{x \in [a, b]} n^{-2} \sum_{j \neq j'} b^2 \mathbb{E}|(\hat{b}_{jj} - b_{jj} - b_{jj}^2) | D_j A_n(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} y_j^2
\]

\[
\leq K \max_{j \leq N} \sup_{x \in [a, b]} n^{-2} \sum_{j \neq j'} \left[\mathbb{E}|y_j^2 D_j^{-1} A_n(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} y_j^2
\right.
\]

\[
+ v_n^{-2} \mathbb{E}|\gamma_{jj} | D_j A_n(I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} y_j^4 |^{1/2}
\]

\[
\leq K \max_{j \leq N} \sup_{x \in [a, b]} n^{-2} \sum_{j \neq j'} b^2 n^{-2} \left[\mathbb{E}(\text{tr} D_j^{-2} \hat{D}_j^{-2}) + \mathbb{E}(\text{tr} D_j^{-1} \hat{D}_j^{-1})^2
\right.
\]

\[
+ v_n^{-2} n^{-1} v_n^{-2} (\mathbb{E}(\text{tr} D_j^{-2} \hat{D}_j^{-2})^2 + \mathbb{E}(\text{tr} D_j^{-1} \hat{D}_j^{-1})^4) |^{1/2}
\]

\[
\leq K \max_{j \leq N} \sup_{x \in [a, b]} n^{-2} (n + n^2 + v_n^{-4} n^{-1} (n^2 + n^4)|^{1/2}
\]

\[
\leq K n^{-1}
\]

So (48) is true.

We get the same bound when \((I + \hat{p}_n A_n)^{-1}\) is removed from the expressions, that is, we also have

\[
\max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}|\gamma_j - \hat{\gamma}_j |^2 \leq K n^{-1}
\]

Moreover, using (32),

\[
\max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}|\hat{\gamma}_j |^2 \leq K n^{-2} \mathbb{E}[\text{tr} D_j^{-1} \hat{D}_j^{-1}] \leq K n^{-1}
\]

Thus

\[
\max_{j \leq N} \sup_{x \in [a, b]} \mathbb{E}|\gamma_j |^2 \leq K n^{-1}
\]

Therefore, with \(d_{jm}^e\) denoting either \(d_j^e\) or \(d_j^m\), and with \(\hat{u}_m^e\) denoting either \(\hat{u}^e\) or \(\hat{w}^m\), we have,
using Lemma 1, (46), (47), (34), and the fact that \(\beta_j = \hat{b}_j - \hat{b}_j^2 \gamma_j + \hat{b}_j^2 \beta_j \gamma_j^2 \),

\[
\sup_{x \in [a,b]} |\hat{w}^{\text{cm}}| = \sup_{x \in [a,b]} \left| \frac{1}{Z_N} \sum_{j=1}^N \hat{b}_j \bar{d}_j^{\text{cm}} \right| \\
\leq Kn^{-1} + \max_{j \leq N} \sup_{x \in [a,b]} \left| \mathbb{E}[\beta_j (1/n)x_j^* A_n^{1/2} (I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} A_n^{1/2} x_j] \right| - \frac{(1/n) \text{tr} E_n \mathbb{E}[D_j^{-1}] A_n (I + \hat{p}_n A_n)^{-1}}{1 + c_n b_j \mathbb{E}(e_n)} \]

\[
\leq Kn^{-1} + K \max_{j \leq N} \sup_{x \in [a,b]} \left(\mathbb{E}[\beta_j - \hat{b}_j + \frac{c_n b_j \hat{b}_j}{1 + c_n b_j \mathbb{E}(e_n)} \mathbb{E}(e_n - (1/n) \text{tr} A_n^{1/2} D_j^{-1} A_n^{1/2})(1/n) \mathbb{E}(\text{tr} D_j^{-1} D_j^{-1}) \right)^{1/2} \\
+ \left| \mathbb{E}[\beta_j (1/n)x_j^* A_n^{1/2} (I + \hat{p}_n A_n)^{-1} E_n D_j^{-1} A_n^{1/2} x_j - (1/n) \text{tr} E_n \mathbb{E}(D_j^{-1}) A_n (I + \hat{p}_n A_n)^{-1}] \right| \right)
\leq Kn^{-1} + K \max_{j \leq N} \sup_{x \in [a,b]} \left(|\hat{b}_j| |\mathbb{E}[\gamma_j - \beta_j \gamma_j^2 + v_n^{-1} n^{-1}]| + (1/n) \text{tr} E_n \mathbb{E}(D_j^{-1}) A_n (I + \hat{p}_n A_n)^{-1}) \right)
\leq K(n^{-1} + \max_{j \leq N} \sup_{x \in [a,b]} |\mathbb{E}[\gamma_j|^2 + v_n^{-2} n^{-2} v_n^{-1} n^{-1/2})\right)
\leq K(n^{-1} + (n^{-1} + v_n^{-2} n^{-2} v_n^{-1} n^{-1/2})
\leq K(n^{-1}.
\]
recalling that \(e_2^0 = 3e_n^0 \), we have for any sequence of positive \(v_n' \) converging to 0,
\[
\lim_{n \to \infty} \sup_{x \in [a, b]} \left| \frac{e_2^0(x + iv_n')}{{v_n}'} - \frac{d}{dx} e_2^0(x) \right| = 0.
\]
Therefore, we conclude that
\[
\sup_{n, x \in [a, b]} \frac{e_2^0(x + iv_n)}{v_n} \leq K,
\]
Writing again \(e_2^0 = e_2^0 \alpha + v_n \beta \) we have, by (51) and the conclusion in Section 3.1 concerning the eigenvalues of \(B_n \) remaining away from \(-1/(c_n e_n^0)\),
\[
\sup_{x \in [a, b]} \frac{e_2^0}{v_n} \beta \leq \sup_{x \in [a, b]} e_2^0 c_n \int \frac{b^2}{|1 + c_n b e_n^0|^2} dF_{B_n}(b) \leq K.
\]
Therefore
\[
\sup_{x \in [a, b]} \int c_n a^2 \int \frac{b^2}{|1 + c_n b e_n^0|^2} dF_{B_n}(b) \frac{dF^{A_n}(b)}{|z|^2 |a_p b_n + 1|^2} \frac{dF^{A_n}(a)}{e_2^0 \alpha/(v_n \beta)} \leq K.
\]
is uniformly bounded away from 1. Moreover, from continuity and the uniform convergence of \(E(e_n) \) and \(\hat{p}_n \), we must have that the supremum over all \(x \in [a, b] \) of the first factor on the right hand side of (50) is also uniformly bounded away from 1 for all \(n \) large. We therefore have from (49)
\[
\sup_{x \in [a, b]} |E(e_n) - e_2^0| = O(n^{-1}).
\]
Again
\[
|E(m_n) - m_2^0| \leq |E(e_n) - e_2^0| \left(\int c_n \int \frac{b^2}{|1 + c_n b e_n^0|^2} dF_{B_n}(b) \frac{dF^{A_n}(b)}{|z|^2 |a_p b_n + 1|^2} \right)^{1/2} \left(\int c_n a^2 \int \frac{b^2}{|1 + c_n b e_n^0|^2} dF_{B_n}(b) \frac{dF^{A_n}(a)}{e_2^0 \alpha/(v_n \beta)} \right)^{1/2} + |\hat{w}_{m_n}^n|.
\]
The second factor on the right is of course bounded by 1, and from (37) and (38), the first factor is bounded, uniformly for \(x \in [a, b] \). Therefore, by (49), we conclude that (8) holds.

Thus combining the results of this section and the previous section, we arrive at (3), and along with section 6 of Bai and Silverstein (1998), this completes the proof of Theorem 1.

Appendix : mathematical tools

Lemma 1 For \(n \times n \) \(A, r \in \mathbb{C} \), and \(r \in \mathbb{C} \) for which \(A \) and \(A + \tau rr^* \) are invertible,
\[
r^*(A + \tau rr^*)^{-1} = \frac{1}{1 + \tau r^* A^{-1} r} r^* A^{-1}.
\]
(follows from \(r^* A^{-1} (A + \tau rr^*) = (1 + \tau r^* A^{-1} r) r^* \).

Moreover, (Lemma 2.6 of Silverstein and Bai (1995)), let \(z \in \mathbb{C}^+ \) with \(v = Im \ z, A \) and \(B \) \(n \times n \)
with \(B \) Hermitian, and \(r \in \mathbb{C} \). Then
\[
|tr \ ((B - zI)^{-1} - (B + rr^* - zI)^{-1}) A| = \left| \frac{r^*(B - zI) A (B - zI)^{-1} r}{1 + r^*(B - zI)^{-1} r} \right| \leq \frac{||A||}{v}.
\]
Lemma 2 (Lemma 2.3 of Silverstein (1995)): For $z = x + iv \in \mathbb{C}^+$ let $m_1(z)$, $m_2(z)$ be Stieltjes transforms of any two measures with respective total mass M_1, M_2; A, B, and $C \in \mathbb{C}^{n \times n}$ with A Hermitian nonnegative definite, and $r \in \mathbb{C}^n$. Then

(a) \[\| (m_1(z)A + I)^{-1} \| \leq \max(4M_1\|A\|/v, 2) \]

(b) \[|\text{tr} B((m_1(z)A + I)^{-1} - (m_2(z)A + I)^{-1})| \]
\[\leq |m_2(z) - m_1(z)|n\|B\|\|A\| \max(4M_1\|A\|/v, 2) \max(4M_2\|A\|/v, 2) \]

(c) \[|r^*B(m_1(z)A + I)^{-1}Cr - r^*B(m_2(z)A + I)^{-1}Cr| \]
\[\leq |m_2(z) - m_1(z)||r||^2\|A\|\|B\| \max(4M_1\|A\|/v, 2) \max(4M_2\|A\|/v, 2) \]

(||r|| denoting Euclidean norm on r).

Lemma 3 (Lemma 2.7 of Bai and Silverstein (1998)) : For $X = (X_1, \ldots, X_n)^T$ i.i.d. standardized and bounded entries, $C \in \mathbb{C}^{n \times n}$ matrix we have for any $p \geq 2$

\[\mathbb{E}|X_1^*CX_1 - \text{tr} C|^p \leq K_p(\text{tr} CC^*)^{p/2} \]

where K_p depends on the distribution of X_1.

Lemma 4 (Analog of (3.1) of Bai and Silverstein (1998)) : When the entries of X_n are bounded the largest eigenvalue of $\frac{1}{N}X_nX_n^*$, denoted by λ_{\max}, satisfies

\[\mathbb{P}(\lambda_{\max} > K) = o(n^{-t}) \]

for any $K > (1 + \sqrt{c})^2$ and any positive t.

Lemma 5 (Lemma 2.2 of Shohat and Tamarkin (1970), and Theorems A.2, A.4, A.5 of Krein and Nudelman (1997)) : If f is analytic on \mathbb{C}^+, both $f(z)$ and $zf(z)$ map \mathbb{C}^+ into \mathbb{C}^+, and there is a $\theta \in (0, \pi/2)$ for which $zf(z) \to c$, finite, as $z \to \infty$ restricted to $\{w \in \mathbb{C} : \theta < \arg w < \pi - \theta\}$, then $c < 0$ and f is the Stieltjes transform of a measure on the nonnegative reals with total mass $-c$.

Acknowledgement : We thank the two reviewers for pointing out errors and for their insightful comments that improved the quality of presentation of the material.

References

