9.14

a.

<table>
<thead>
<tr>
<th>x_i</th>
<th>y_i</th>
<th>x_i^2</th>
<th>x_iy_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>7² = 49</td>
<td>7(2) = 14</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4² = 16</td>
<td>4(4) = 16</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6² = 36</td>
<td>6(2) = 12</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2² = 4</td>
<td>2(5) = 10</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1² = 1</td>
<td>1(7) = 7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1² = 1</td>
<td>1(6) = 6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3² = 9</td>
<td>3(5) = 15</td>
</tr>
</tbody>
</table>

Totals:
\[\sum x_i = 7 + 4 + 6 + 2 + 1 + 1 + 3 = 24 \]
\[\sum y_i = 2 + 4 + 2 + 5 + 1 + 6 + 5 = 31 \]
\[\sum x_i^2 = 49 + 16 + 36 + 4 + 1 + 9 = 116 \]
\[\sum x_iy_i = 14 + 16 + 12 + 10 + 7 + 6 + 15 = 80 \]

b.

\[SS_w = \sum x_iy_i = \frac{(\sum x_i)(\sum y_i)}{n} = 80 - \frac{(24)(31)}{7} = 80 - 106.2857143 = -26.2857143 \]

c.

\[SS_w = \sum x_i^2 = \frac{\sum x_i^2}{n} = 116 - \frac{(24)^2}{7} = 82.28571429 = 33.71428571 \]

d.

\[\hat{\beta}_1 = \frac{SS_w}{SS_w} = -\frac{-26.2857143}{33.71428571} = -.797770117 = -.7797 \]

e.

\[\bar{x} = \frac{\sum x_i}{n} = 3.428571429 \quad \bar{y} = \frac{\sum y_i}{n} = 31 \quad \frac{1}{7} = 4.428571429 \]

f.

\[\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 4.428571429 - (-.7797)(3.428571429) = 4.428571429 - (-2.673123487) = 7.101694916 \approx 7.102 \]

g.

The least squares line is \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 7.102 - .7797x \).
b. Choose \(y = 1 + x \) since it best describes the relation of \(x \) and \(y \).

c.

<table>
<thead>
<tr>
<th>(y)</th>
<th>(x)</th>
<th>(y = 1 + x)</th>
<th>(y - \hat{y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.5</td>
<td>1.5</td>
<td>2 - 1.5 = .5</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>2.0</td>
<td>1 - 2.0 = -1.0</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>2.5</td>
<td>3 - 2.5 = .5</td>
</tr>
</tbody>
</table>

Sum of errors = 0

<table>
<thead>
<tr>
<th>(y)</th>
<th>(x)</th>
<th>(y = 3 - x)</th>
<th>(y - \hat{y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.5</td>
<td>3 - .5 = 2.5</td>
<td>2 - 2.5 = -.5</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>3 - 1.0 = 2.0</td>
<td>1 - 2.0 = -1.0</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>3 - 1.5 = 1.5</td>
<td>3 - 1.5 = 1.5</td>
</tr>
</tbody>
</table>

Sum of errors = 0

d. \(\text{SSE} = \sum (y - \hat{y})^2 \)

SSE for 1st model: \(y = 1 + x \), \(\text{SSE} = (.5)^2 + (-1)^2 + (.5)^2 = 1.5 \)

SSE for 2nd model: \(y = 3 - x \), \(\text{SSE} = (-.5)^2 + (-1)^2 + (1.5)^2 = 3.5 \)

The best fitting straight line is the one that has the smallest least squares. The model \(y = 1 + x \) has a smaller SSE, and therefore it verifies the visual check in part a.

e. Some preliminary calculations are:

\[
\sum x_i = 3 \quad \sum y_i = 6 \quad \sum x_i y_i = 6.5 \quad \sum x_i^2 = 3.5
\]

\[
\text{SS}_w = \sum (x_i - \bar{x})^2 = 3.5 - \frac{(3)(6)}{3} = .5
\]

\[
\text{SS}_x = \frac{\sum x_i^2}{n} - \frac{(\sum x_i)^2}{n} = 3.5 - \frac{(3)^2}{3} = .5
\]

\[
\hat{\beta}_1 = \frac{\sum x_i y_i}{n \sum x_i^2} = \frac{6.5}{3 \cdot 3.5} = .5
\]

\[
\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 2 - 1(1) = 1 \Rightarrow \bar{y} - \hat{\beta}_0 \bar{x} = 1 + 1
\]

The least squares line is the same as the second line given.

9.20

a. It appears that there is a positive linear trend. As the year of birth increases, the Z12-note entropy tends to increase.

b. The slope of the line is positive. As the year of birth increases, the Z12-note entropy tends to increase.

c. The line shown is the least squares line – it is the best line through the sample points. We do not know the values of \(\beta_0 \) and \(\beta_1 \) so we do not know the true line of means.
From the printout, the least squares prediction equation is \(\hat{y} = 295.25 - 16.364x \).

b. Using MINITAB, the fitted regression plot and scatterplot are:

Since the data are fairly close the least squares prediction line, the line is a good predictor of annual rainfall.

c. From the printout, the least squares prediction equation is \(\hat{y} = 10.52 + 0.016x \)

Using MINITAB, the fitted regression plot and scatterplot are:

Since the data are not close to the least squares prediction line, the line is not a good predictor of ant species.
9.34 The graph in b would have the smallest \(r^2 \) because the width of the data points is the smallest.

9.36 a. \(r^2 = \frac{\text{SSE}}{n-2} = \frac{.429}{12-2} = .0429 \)

b. \(s = \sqrt{r^2} = \sqrt{.0429} = .2071 \)

c. We would expect most of the observations to be within 2s of the least squares line. This is:
\[2s = 2\sqrt{.0429} = .414 \]

9.52 a.

\[\sum x = 23 \quad \sum x^2 = 111 \quad \sum xy = 81 \]

\[\sum y = 18 \quad \sum y^2 = 62 \]

\[\text{SS}_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n} = 81 - \frac{23(18)}{7} = 21.85714286 \]

\[\text{SS}_x = \sum x^2 - \frac{[(\sum x)^2]}{n} = 111 - \frac{23^2}{7} = 35.42857143 \]

\[\text{SS}_y = \sum y^2 - \frac{[(\sum y)^2]}{n} = 62 - \frac{18^2}{7} = 15.71428571 \]

\[\hat{\beta} = \frac{\text{SS}_{xy}}{\text{SS}_x} = \frac{21.85714286}{35.42857143} = .616935483 = .617 \]

\[\hat{\alpha} = \bar{y} - \hat{\beta} \bar{x} = \frac{18}{7} - .616935483 \cdot \frac{23}{7} = .544354838 = .544 \]

The least squares line is \(y = .544 + .617x \)

c. The line is plotted on the graph in a.

d. To determine if \(x \) contributes information for the linear prediction of \(y \), we test:
\[H_0: \ \beta = 0 \]
\[H_a: \ \beta \neq 0 \]
e. The test statistic is \(t = \frac{\hat{\beta} - 0}{s} = \frac{.617 - 0}{.6678} = 5.50 \)

where \(SSE = SS_{yw} - \hat{\beta}SS_{xt} = 15.71428571 - .616935483(21.85714286) = 2.2298372 \)

\[s^2 = \frac{SSE}{n-2} = \frac{2.2298372}{7-2} = .44596774 \]

\[s = \sqrt{.44596774} = .6678 \]

The degrees of freedom are \(n - 2 = 7 - 2 = 5 \).

f. The rejection region requires \(\alpha/2 = .05/2 = .025 \) in each tail of the \(t \) distribution with \(df = 5 \). From Table IV, Appendix A, \(t_{.025} = 2.571 \). The rejection region is \(t < -2.571 \) or \(t > 2.571 \).

Since the observed value of the test statistic falls in the rejection region (\(t = 5.50 > 2.571 \)), \(H_0 \) is rejected. There is sufficient evidence to indicate \(x \) contributes information for the linear prediction of \(y \) at \(\alpha = .05 \).

g. For confidence coefficient .95, \(\alpha = 1 - .95 = .05 \) and \(\alpha/2 = .05/2 = .025 \). From Table IV, Appendix A, with \(df = n - 2 = 7 - 2 = 5, t_{.025} = 2.571 \). The 95% confidence interval is:

\[\hat{\beta} \pm t_{.025} \frac{s}{\sqrt{SS_{xt}}} \Rightarrow \hat{\beta} \pm t_{.025} \frac{.6678}{\sqrt{35.42857143}} \]

\[\Rightarrow \hat{\beta} \pm .288 \Rightarrow (.329, .905) \]

9.60 Some preliminary calculations are:

\[\bar{y} = \frac{\sum y}{n} = \frac{78.8}{16} = 4.925 \]

\[\bar{x} = \frac{\sum x}{n} = \frac{247}{16} = 15.4375 \]

\[SS_{xt} = \sum xy - \left(\frac{\sum x \sum y}{n} \right) = 1264.6 - \frac{247(78.8)}{16} = 48.125 \]

\[SS_{xt} = \sum x^2 - \left(\frac{\sum x \sum y}{n} \right) = 4193 - \frac{247^2}{16} = 379.9375 \]

\[\hat{\beta} = \frac{SS_{yt}}{SS_{xt}} = \frac{48.125}{379.9375} = .12666557 \]

\[\hat{\beta}_b = \bar{y} - \hat{\beta}\bar{x} = \frac{78.8}{16} - (.12666557) \left(\frac{247}{16} \right) = 2.969600263 \]

\[SS_{yw} = \sum y^2 - \left(\frac{\sum y \sum y}{n} \right) = 406.84 - \frac{78.8^2}{16} = 18.75 \]
To determine whether blood lactate level is linearly related to perceived recovery, we test:

\[H_0: \beta = 0 \]
\[H_a: \beta \neq 0 \]

The test statistic is

\[t = \frac{\hat{\beta}_1 - 0}{s / \sqrt{SS_{\epsilon}}} = \frac{12667 - 0}{\sqrt{SS_{\epsilon}}} = 2.597 \]

The rejection region requires \(\alpha^2 = 0.10^2 = 0.05 \) in each tail of the t distribution. From Table IV, Appendix A, with \(df = n - 2 = 16 - 2 = 14 \), \(t_{0.05} = 1.761 \). The rejection region is \(t < -1.761 \) or \(t > 1.761 \).

Since the observed test statistic falls in the rejection region (\(t = 2.597 > 1.761 \)), \(H_0 \) is rejected. There is sufficient evidence to indicate blood lactate level is linearly related to perceived recovery at \(\alpha = 0.10 \).

9.92 a. If a jeweler wants to predict the selling price of a diamond stone based on its size, he would use a prediction interval for \(y \).

b. If a psychologist wants to estimate the average IQ of all patients that have a certain income level, he would use a confidence interval for \(E(y) \).
b. Some preliminary calculations are:

\[
\begin{align*}
\sum x_i &= 28 & \sum x_i^2 &= 140 & \sum x_i y_i &= 196 \\
\sum y_i &= 42 & \sum y_i^2 &= 284
\end{align*}
\]

\[
\begin{align*}
SS_{xy} &= \sum x_i y_i - \frac{\sum x_i \sum y_i}{n} = 196 - \frac{28(42)}{7} = 28 \\
SS_{xx} &= \sum x_i^2 - \left(\frac{\sum x_i}{n}\right)^2 = 140 - \frac{28^2}{7} = 28 \\
SS_{yy} &= \sum y_i^2 - \left(\frac{\sum y_i}{n}\right)^2 = 284 - \frac{42^2}{7} = 32
\end{align*}
\]

\[
\hat{\beta}_0 = \frac{SS_{xy}}{SS_{xx}} = \frac{28}{28} = 1, \quad \hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = 4 \frac{28}{7} = 6 - 4 = 2
\]

The least squares line is \(\hat{y} = 2 + x \).

c. \(SSE = SS_{xy} - \hat{\beta}_1 SS_{xx} = 32 - 1(28) = 4 \)

\[
\hat{s}^2 = \frac{SSE}{n-2} = \frac{4}{5} = .8
\]

d. The form of the confidence interval is \(\hat{y} \pm t_{\alpha/2} \frac{\hat{s}}{\sqrt{n}} \left(\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}} \right) \)

where \(s = \sqrt{\hat{s}^2} = \sqrt{.8} = .8944 \). For \(x_p = 4 \), \(\hat{y} = 2 + (4) = 6 \), and \(\bar{x} = \frac{28}{7} = 4 \).

For confidence coefficient .90, \(\alpha = 1 - .90 = .10 \) and \(\alpha/2 = .10/2 = .05 \). From Table IV, Appendix A, \(t_{.05} = 2.015 \) with \(df = n - 2 = 7 - 2 = 5 \).

The 90% confidence interval is:

\[
6 \pm 2.015(.8944) \sqrt{\frac{1}{7} + \frac{(4-4)^2}{28}} \Rightarrow 6 \pm .681 \Rightarrow (5.319, 6.681)
\]

e. The form of the prediction interval is \(\hat{y} \pm t_{\alpha/2} \hat{s} \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}} \)

The 90% prediction interval is:

\[
6 \pm 2.015(.8944) \sqrt{\frac{1}{7} + \frac{(4-4)^2}{28}} \Rightarrow 6 \pm 1.927 \Rightarrow (4.073, 7.927)
\]

f. The 95% prediction interval for \(y \) is wider than the 95% confidence interval for the mean value of \(y \) when \(x_p = 4 \).

The error of predicting a particular value of \(y \) will be larger than the error of estimating the mean value of \(y \) for a particular \(x \) value. This is true since the error in estimating the mean value of \(y \) for a given \(x \) value is the distance between the least squares line and the true line of means, while the error in predicting some future value of \(y \) is the sum of two errors—the error of estimating the mean of \(y \) plus the random error that is a component of the value of \(y \) to be predicted.