(8-4) a) $\begin{array}{|c|ccc|c|} \hline X & 1 & 2 & 3 & p(X) \\ \hline 1 & .1 & .2 & 0 & .3 \\ 2 & .1 & 0 & .2 & .3 \\ 3 & 0 & .1 & .3 & .4 \\ \hline p(Y) & .2 & .3 & .5 & \\ \hline \end{array}$

b) \[p(X \mid Y = 2) = \frac{p(X, 2)}{p_Y(2)} \]
\[\begin{array}{c} \\ \hline 1 \quad 2 \\ \hline .2 & 2 \\ .3 & 3 \\ \hline \end{array} \]
\[\begin{array}{c} \\ \hline 2 \quad 0 \\ \hline .3 & 0 \\ \hline \end{array} \]
\[\begin{array}{c} \\ \hline 3 \quad 1 \\ \hline .3 & 1 \\ \hline \end{array} \]

c) \[p(Y \mid X = 3) = \frac{p(3, Y)}{p_X(3)} \]
\[\begin{array}{c} \\ \hline 1 \quad 0 \\ \hline .4 & 0 \\ \hline \end{array} \]
\[\begin{array}{c} \\ \hline 2 \quad 1 \\ \hline .4 & 1 \\ \hline \end{array} \]
\[\begin{array}{c} \\ \hline 3 \quad 3 \\ \hline .4 & 3 \\ \hline \end{array} \]

(8-4) d) Is $p(X, Y) = p(X) \cdot p(Y)$ for each (X, Y)? Consider $(1, 1)$:

\[\text{Is } p(1, 1) = p_X(1) \cdot p_Y(1)? \]
\[.1 \neq .3 \times .2 \quad \text{NO!} \]

Thus, X and Y are not independent.
First, find $p(X \mid Y = 0)$

<table>
<thead>
<tr>
<th>X</th>
<th>$p(X \mid Y = 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

So $E(X \mid Y = 0) = \sum_X X p(X \mid Y = 0) = 1(0.4) + 2(0.2) + 3(0.4) = 2.0$

b) X | $p(X \mid Y = 1)$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

So $E(X \mid Y = 1) = \sum_X X p(X \mid Y = 1) = 1(0.6) + 2(0.2) + 3(0.2) = 1.6$

c) For $Y = 1$, we expect a smaller value of X (1.6) than when $Y = 0$ (2.0). This suggests a negative relationship between X and Y.

d) Is $p(X, Y) = p(X) p(Y)$ for each (X, Y)? Consider $(1, 0)$:

Is $p(1, 0) = p_X(1) p_Y(0)$?

$.2 \neq .5 \times .5$ NO!

Since it is not the case that $p(X, Y) = p(X) p(Y)$ for each (X, Y), we know that X and Y are not independent.
(8-15) a) \((X,Y)\) \(p(X,Y)\) \(W = [X - E(X) \{Y - E(Y)\}]\)

\[\begin{array}{ccc}
(1,1) & 0.2 & (1 - 1.5)(1 - 1.5) = 0.25 \\
(1,2) & 0.3 & (1 - 1.5)(2 - 1.5) = -0.25 \\
(2,1) & 0.3 & (2 - 1.5)(1 - 1.5) = -0.25 \\
(2,2) & 0.2 & (2 - 1.5)(2 - 1.5) = -0.25 \\
\end{array}\]

Note \(E(X) = E(Y) = 1.5\)

Thus, \(p(W)\) is

\[
\begin{array}{cc}
W & p(W) \\
-0.25 & 0.6 \\
0.25 & 0.4 \\
\end{array}
\]

b) \(E(W) = \sum \sum \ W \ p(W) = (-0.25)(0.6) + (0.25)(0.4) = -0.05\)

c) \(COV(X,Y) = \sum \sum \ XY \ p(X,Y) - E(X) E(Y)\)

\[= (1)(1)(0.2) + (1)(2)(0.3) + (2)(1)(0.3) + (2)(2)(0.2) - (1.5)^2\]

\[= 0.2 + 0.6 + 0.6 + 0.8 - 2.25 = -0.05\]

d) They are the same, as they should be since

\(COV(X,Y) = E[(X - E(X))(Y - E(Y))]\).
\(\text{(8-19) a) } \)

\[
\begin{array}{c|ccc|c}
X & 0 & 1 & 2 & p(X) \\
\hline
0 & .1 & 0 & .1 & .2 \\
1 & 0 & .3 & 0 & .3 \\
2 & 0 & .3 & 0 & .3 \\
3 & .1 & 0 & .1 & .2 \\
\end{array}
\]

\[
p(Y) = .2 \quad .6 \quad .2
\]

\[
E(X) = 1.5 \quad \quad E(Y) = 1
\]

\[
\text{COV} (X, Y) = 1(1)(.3) + 2(1)(.3) + 3(2)(.1) - (1.5)(1)
\]
\[
= .3 + .6 + .6 - 1.5 = 0
\]

b) \(X \) and \(Y \) are independent if and only if \(p(X,Y) = p(X) \cdot p(Y) \) for each \((X,Y)\).

Consider \((0,0)\):

\[
\text{Is } p(0,0) = p_X(0) \cdot p_Y(0) ?
\]
\[
.1 \neq .2 \times .2 \quad \quad \text{NO!}
\]

Since it is not the case that \(p(X,Y) = p(X) \cdot p(Y) \) for each \((X,Y)\), \(X \) and \(Y \) are not independent.

c) \(E(X \mid Y = 0) = 1.5; \ E(X \mid Y = 1) = 1.5; \ E(X \mid Y = 2) = 1.5 \).
\(E(Y \mid X = 0) = 1; \ E(Y \mid X = 1) = 1; \ E(Y \mid X = 2) = 1; \ E(Y \mid X = 3) = 1 \).

Thus, \(E(X \mid Y) \) is invariant to the value of \(Y \), and \(E(Y \mid X) \) is invariant to the value of \(X \). What we expect \(X(Y) \) to be as \(Y(X) \) changes does not change. This suggests that \(\text{COV}(X,Y) = 0 \) as seen above in part (a). But there is some sort of relationship between \(X \) and \(Y \), as seen in part (b); this is just not the type of relationship which the covariance uncovers.
Note that for each possible \((X,Y)\), we have \(Y = X + 1\).

\[\text{b) } \quad E(X) = 2.1 \quad E(Y) = 3.1\]

\[\begin{align*}
\sigma_X^2 &= \left[\sum X^2 p(X) \right] - [E(X)]^2 = (1)^2(0.3) + (2)^2(0.3) + (3)^2(0.1) - (2.1)^2 = 0.69 \\
\sigma_Y^2 &= (2)^2(0.3) + (3)^2(0.3) + (4)^2(0.1) - (3.1)^2 = 0.69 \\
\text{cov}(X,Y) &= \left[\sum \sum X \cdot Y \cdot p(X,Y) \right] - E(X)E(Y) \\
&= 1(2)(0.3) + 2(3)(0.3) + 3(4)(0.1) - (2.1)(3.1) = 0.69 \\
\rho &= \frac{\text{COV}(X,Y)}{\sigma_X \sigma_Y} = \frac{0.69}{0.69 \cdot 0.69} = 1
\end{align*}\]

c) Since \(Y = X + 1\) for each possible \((X,Y)\), there is a perfect linear (and positive) relationship between \(X\) and \(Y\). Thus, \(\rho = 1\).
\[(8.25) \quad \begin{array}{ccccccc}
X & Y & XY & (X_i - \bar{X})^2 & (Y_i - \bar{Y})^2 \\
\hline
2 & 3 & 6 & 4 & 1 \\
3 & 3 & 9 & 1 & 1 \\
5 & 4 & 20 & 1 & 0 \\
4 & 3 & 12 & 0 & 1 \\
4 & 4 & 16 & 0 & 0 \\
6 & 7 & 42 & 4 & 9 \\
\hline
\bar{X} = 4 & \bar{Y} = 4 & \Sigma = 105 & \Sigma = 10 & \Sigma = 12 \\
\end{array} \]

\[
\text{Cov}(X,Y) = \frac{1}{n-1} \left[(\Sigma X_iY_i - n(\bar{X})(\bar{Y})) \right] = (1/5) \left[105 - (6)(4)(4) \right] = 1.8
\]

\[
s_X^2 = \frac{1}{n-1} \Sigma (X_i - \bar{X})^2 = (1/5)(10) = 2
\]

\[
s_Y^2 = \frac{1}{n-1} \Sigma (Y_i - \bar{Y})^2 = (1/5)(12) = 2.4
\]

\[
\hat{\rho} = \frac{\text{Cov}(X,Y)}{s_X s_Y} = \frac{1.8}{\sqrt{2} \sqrt{2.4}} = .822
\]

\[(8.31) \quad E(W) = 20000 \quad E(A) = 3000 \quad \rho = .4 \]

\[\sigma_W = 5000 \quad \sigma_A = 2500 \]

\[\text{Tl} = W + A \]

\[E(Tl) = E(W) + E(A) = 20000 + 3000 = $23,000 \]

(continued)
\[\sigma_{W}^{2} = \sigma_{A}^{2} + \sigma_{W}^{2} + 2 \text{COV} (W,A) \]

But \[\rho = \frac{\text{COV} (W,A)}{\sigma_{W} \sigma_{A}} \]

\[0.4 = \frac{\text{COV} (W,A)}{(5000)(2500)} \]

\[\text{COV} (W,A) = 5,000,000 \]

So,

\[\sigma_{W}^{2} = (5000)^{2} + (2500)^{2} + 2(5,000,000) = 41,250,000 \]

\[\sigma_{W} = 6422.62 \]

(8-35) \[\text{COV} (X,Y) = \text{E}(XY) - \text{E}(X) \text{E}(Y) \]

\[1 = \text{E}(XY) - (2)(3) \]

\[\text{E}(XY) = 7 \]

(8-37) The hint tells us that \(W \) is normal. Note

\[\text{E}(W) = \text{E}(X) + \text{E}(Y) = 5 + 3 = 8 \] (continued)

\[\sigma_{W}^{2} = \sigma_{X}^{2} + \sigma_{Y}^{2} = 25 + 16 = 41 \]

Thus, \(W \sim N(8,41) \)

So,

\[\text{Pr} (W > 9) = \text{Pr} \left(\frac{W - \text{E}(W)}{\sigma_{W}} > \frac{9 - 8}{\sqrt{41}} \right) = \text{Pr} (Z > .16) = .4364 \]

(8-38) \((X + Y) \geq 4\) if \((X,Y)\) equals \((1,3), (2,2),\) or \((2,3).\) Since these events are mutually exclusive, we sum their probabilities to determine \[\text{Pr} (X + Y \geq 4) = .2. \]