(6-16) a)

\[P(x) \]

\[
\begin{align*}
\frac{1}{6} & \quad 1 \\
\frac{3}{6} & \quad 2 \\
\frac{2}{6} & \quad 3 \\
\frac{1}{6} & \quad 4
\end{align*}
\]

b) area under curve = \[1 \left(\frac{1}{6} \right) + 1 \left(\frac{4}{6} \right) + 1 \left(\frac{1}{6} \right) = 1 \]

c) \[\Pr(0 < X < \frac{3}{4}) = 1 \frac{3}{4} \times \frac{1}{6} = \frac{3}{24} = 0.125 \]

d) \[\Pr(X > 2.5) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12} = 0.083 \]

e) \[\Pr(0 < X < 1.5) = 1 \left(\frac{1}{6} \right) + 1 \left(\frac{4}{6} \right) + \frac{1}{6} = \frac{6}{12} = 0.5 \]

f) \[\Pr(0.5 < X < 2.5) = 1 \left(\frac{1}{6} \right) + 1 \left(\frac{4}{6} \right) + \frac{1}{6} = \frac{1}{12} + \frac{4}{6} + \frac{1}{12} = \frac{5}{6} = 0.833 \]

(6-19) a) \[\Pr(X > 14) = \Pr \left(\frac{X - \mu}{\sigma} > \frac{14 - 10}{\sqrt{24}} \right) = \Pr(Z > .82) = .2061 \]

b) \[\Pr(8 < X < 20) = \Pr \left(\frac{8 - 10}{\sqrt{24}} < \frac{X - \mu}{\sigma} < \frac{20 - 10}{\sqrt{24}} \right) \]

= \[\Pr(41 < Z < 2.04) \]

= \[\left[\Pr(0 < Z < .41) \right] \times \Pr(Z \geq 2.04) \]

= \[0.6591 \times 0.0207 = .006 \]

(6-5) c) \[\Pr(|X - \mu| \geq 6) = \Pr \left(\frac{|X - \mu|}{\sigma} \geq \frac{6}{\sqrt{24}} \right) \]

= \[\Pr(|Z| \geq 1.22) \]

= \[2 \Pr(Z \geq 1.22) = 2(0.1112) = .2224 \]
d) \(\Pr (X > X^*) = .10 \)
\[
\Pr \left(\frac{X - \mu}{\sigma} > \frac{X^* - 10}{\sqrt{24}} \right) = .10
\]
\[
\Pr (Z > \frac{X^* - 10}{\sqrt{24}}) = .10
\]
We know \(\Pr (Z > 1.28) \) is approximately .10.
Thus
\[
\frac{X^* - 10}{\sqrt{24}} = 1.28 \text{ and } X^* = (1.28)(\sqrt{24}) + 10 = 16.27
\]
e) \(Y \) is a linear function of the normal \(X \); thus \(Y \) is normal.

Note
\[
\begin{align*}
\mu_Y &= 4 + 6\mu_X = 4 + 6(10) = 64 \\
\sigma_Y^2 &= (6)^2\sigma_X^2 = (36)(24) = 864
\end{align*}
\]
Thus \(Y \sim N(64, 864) \)

So
\[
\Pr (Y > 16) = \Pr \left(\frac{Y - \mu_Y}{\sigma_Y} > \frac{16 - 64}{\sqrt{864}} \right)
= \Pr (Z > -1.63)
= 1 - \Pr (Z \leq -1.63) = 1 - .0516 = .9484
\]

\(\sqrt{6-21} \)
a) \(X \sim N \) with \(\mu = 15,000 \) and \(\sigma = 5000. \)
\[
\Pr (X < 8000) = \Pr \left(\frac{X - \mu}{\sigma} < \frac{8000 - 15,000}{5000} \right)
= \Pr (Z < -1.4) = \Pr (Z > 1.4) = .0808
\]

The poverty rate is then 8.08%.

b) Let \(X^* \) be that income such that \(\Pr (X > X^*) = .10 \)
\(X^* \) is then the 90th percentile. But if
\[
\Pr (X > X^*) = .10
\]
then
\[
\Pr \left(\frac{X - \mu}{\sigma} > \frac{X^* - 15,000}{5000} \right) = .10
\]
Since \(\Pr (Z > 1.28) \) is approximately .10, we know
\[
\frac{X^* - 15,000}{5000} = 1.28
\]
\[
X^* = (1.28)(5000) + 15,000 = $21,400
\]
(6-22) Since r is normal, we know l is normal
\[\mu_l = 100,000,000 - 5,000,000 \quad \mu_r = 100,000,000 - 5,000,000 \]
\[= 60,000,000 \]

\[\sigma_l = 5,000,000 \quad \sigma_r = 5,000,000 \]

\[\rightarrow \sigma_l = 5,000,000 \sigma_l = 5,000,000 \]

\[\Rightarrow \sigma_l = 5,000,000 \sigma_l = 5,000,000 \]

\[\Pr (l > 50,000,000) = \Pr \left(\frac{l - \mu_l}{\sigma_l} > \frac{50,000,000 - 60,000,000}{10,000,000} \right) \]
\[= \Pr (Z > -1) \]
\[= 1 - \Pr (Z > 1) \]
\[= 1 - .1587 \]
\[= .8413 \]

5. \(\lambda = 2, \) therefore, mean $= \frac{1}{2}=0.5, \) variance $= \frac{1}{4}=0.25 \]

6. \(\lambda = 3. \)

\[\text{a. } P[x=2] = 0 \]
\[\text{b. } P[x>2] = \exp((-3)*2)) = 0.002479 \]
\[\text{c. } P[x<-4] = 1 - \exp((-3)*4) = 0.999993855 \]
\[\text{d. } P[1<-x<-4] = P[x<-4] - P[x<1] = 0.999993855 - (1 - 0.049787) = 0.04978 \]

7. Mean $= 4,000, \) therefore, we have $\lambda = 1/4000 \)

\[\text{a. } P[x > 1000] = 0.7788 \]
\[\text{b. } P[x < 200] = 1 - 0.9512 = 0.0488 \]
\[\text{c. } P[600 < x < 800] = 0.8607 - 0.8187 = 0.042 \]

8. Chi-square from table 3

\[\text{a. 27.49} \]
\[\text{b. 5.229} \]
\[\text{c. 6.262} \]
\[\text{d. 0} \]
(7-3) \(E(Q^d) = 50 \cdot .2E(P) = 50 \cdot .2(100) = 30 \)

(7-4) a) The \(p(X) \) is

<table>
<thead>
<tr>
<th>(X)</th>
<th>(p(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{1}{6})</td>
</tr>
</tbody>
</table>

\[
E(Y) = \sum_X (5 + 4X) p(X)
\]

\[
= (5 + 4(1))(\frac{1}{6}) + (5 + 4(2))(\frac{1}{6}) + (5 + 4(3))(\frac{1}{6}) + (5 + 4(4))(\frac{1}{6})
+ (5 + 4(5))(\frac{1}{6}) + (5 + 4(6))(\frac{1}{6})
\]

\[
= \frac{9}{6} + \frac{13}{6} + \frac{17}{6} + \frac{21}{6} + \frac{25}{6} + \frac{29}{6} = \frac{114}{6} = 19
\]

b) \(p(Y) \) is

<table>
<thead>
<tr>
<th>(Y)</th>
<th>(p(Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>13</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>17</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>21</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>25</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>29</td>
<td>(\frac{1}{6})</td>
</tr>
</tbody>
</table>

\[
E(Y) = \sum_Y Y p(Y) = 9(\frac{1}{6}) + 13(\frac{1}{6}) + 17(\frac{1}{6}) + 21(\frac{1}{6}) + 25(\frac{1}{6}) + 29(\frac{1}{6}) = 19
\]

c) \(E(Y) = 5 + 4E(X) = 5 + 4(3.5) = 19 \) since \(E(X) = 3.5 \)
\[\sqrt{7.8} \quad \sigma^2 = E[(X - E(X))^2] \]
\[= E[X^2 - 2E(X)X + [E(X)]^2] \]
\[= E(X^2) - 2E(X)E(X) + [E(X)]^2 \]
\[= E(X^2) - 2E(X)^2 + [E(X)]^2 \]
\[= E(X^2) - [E(X)]^2 \]

Using the data from (7-5)
\[\sigma^2 = E(X^2) - [E(X)]^2 \]
\[= \sum_X X^2 p(X) - \left(\frac{\sum X}{2} \right)^2 \]
\[= (1)^2 \left(\frac{1}{6} \right) + (2)^2 \left(\frac{1}{6} \right) + (3)^2 \left(\frac{1}{6} \right) + (4)^2 \left(\frac{1}{6} \right) + (5)^2 \left(\frac{1}{6} \right) + (6)^2 \left(\frac{1}{6} \right) - \left(\frac{7}{2} \right)^2 \]
\[= 1 + 4 + 9 + 16 + 25 + 36 - \frac{49}{4} \]
\[= \frac{91}{6} - \frac{49}{4} = \frac{35}{12} \]

\[\sqrt{7.9} \quad E(Y) = 2E(X^2) + 4 \]

but, since
\[\sigma^2 = E(X^2) - [E(X)]^2 \]

we know
\[\sigma^2 + [E(X)]^2 = E(X^2) \]

and thus
\[9 + (5)^2 = E(X^2) \]
\[E(X^2) = 34 \]

Thus, \(E(Y) = 2(34) + 4 = 72 \).