Review of the Topics for the Final

I. Comparison of Two Independent Populations

Confidence Intervals:
A 100(1 - \(\alpha\))% confidence interval for (\(\mu_1 - \mu_2\)) when the population standard deviations are unknown is:

If \(\sigma_1\) and \(\sigma_2\) are unknown but \(\sigma_1 = \sigma_2\), then a pooled estimate of the common variance is:

Using this estimate, a 100(1 - \(\alpha\))% c.i. for (\(\mu_1 - \mu_2\)) is:

Hypothesis Testing
Null and alternative hypotheses, type I and type II errors, test statistics

To test \(H_o: \mu_1 = \mu_2\) compute \(t\) and reject \(H_o\) in favor of \(H_\Lambda\) of

\(H_\Lambda: \mu_1 < \mu_2\) if \(t < -t_\alpha\)

\(H_\Lambda: \mu_1 > \mu_2\) if \(t > t_\alpha\)

\(H_\Lambda: \mu_1 \neq \mu_2\) if \(t < -t_{\alpha/2}\) or \(t > t_{\alpha/2}\)
Example: Problem #2 of the sample final.

If \(\sigma_1 \) and \(\sigma_2 \) are unknown but \(\sigma_1 = \sigma_2 \), then use the **pooled Procedure**.

Example: Exercise 7.5.6, page 258.

Sample size Calculation and Power

A popular formula for computing the sample size for comparing two means (one-sided alternative) is:

\[
 n_1 = \left(\sigma_1^2 + \sigma_2^2 \right) / k \left(z_{\alpha} + z_{\beta} \right)^2 / (\mu_1 - \mu_2)^2
\]

\[
 n_2 = k n_1
\]

The Wilcoxon-Mann-Whitney Test

Nonparametric methods are used when:

1. The populations are not normal.
2. Data are qualitative.
3. Data are ranked.

To compare two populations, suppose we have a sample of size \(n_1 \) from the first population and a sample of size \(n_2 \) from the second population \((n_1 \geq n_2) \). For each observation in sample 1, count the number of observations in sample 2 that are smaller in value. Let \(K_1 \) be the sum of these counts. Similarly, for each observation in sample 2, count the number of observations in sample 1 that are smaller in value. Let \(K_2 \) be the sum of these counts. The **Wilcoxon-Mann-Whitney test statistic** \(U \) is the larger of \(K_1 \) and \(K_2 \). We use Table 6 to find the critical values.

Example: Problem #2 of the sample final.
II. Comparison of Paired Samples

Paired t-test and Confidence Interval

In the matched pair designs we apply the one-sample t-procedure. Paired designs are used to free the comparisons from the effects of extraneous variables.

Example: Exercise 8.2.2, page 308.

The Sign Test

In many applications we may be interested in comparing matched pairs, when we have ranked or quantitative data.

Let N_+ and N_- denote the number of positive and negative differences, respectively. Define B_s as the larger of N_+ and N_- and use Table 7 to find the critical values.

Example: Exercise 8.4.5, page 320.

Wilcoxon Signed Rank Sum Test

This test for matched pairs is for quantitative data when the normality assumption is not satisfied.

Let W_+ and W_- denote the rank sum of the positive and negative differences, respectively. Define W_s as the larger of W_+ and W_- and use Table 8 to find the critical values.

Example: Exercise 8.5.7, page 326.
III. Analysis of Categorical Data

Categorical data analysis is used when the variable under study is classified into several categories.

The Chi-Square Goodness-of-Fit Test

Let O represent the *observed* and E the *expected* frequencies, respectively. Then the *chi-square test statistics* is:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

The *degree of freedom* of the chi-square statistics is $df = \nu - 1$, where ν is the number of categories. We use Table 9 to find the critical values.

The 2x2 Contingency Tables

The 2x2 *contingency tables* arise in dealing with two binary categorical responses. The *chi-square test statistics* for testing independence or homogeneity in 2x2 tables is:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

The degree of freedom of the chi-square statistics is $df = 1$. Here,

$$E = \text{Row tot} \times \text{Column tot} / \text{Grand tot}$$

The r×k Contingency Tables

The r×k *contingency tables* are generalization of 2x2 tables in dealing with two categorical responses. Again if we let O represent the *observed* and E the *expected* frequencies. We can use the *chi-square test statistics*:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

The *degree of freedom* of this chi-square statistics is $df = (r - 1)(k-1)$.

Example: Problem #4 of the sample final.
Fisher’s Exact Test

Example: Exercise 10.4.6, page 385

Difference Between Two Population Proportions

100(1-\(\alpha\)) % adjusted and unadjusted confidence intervals for \((p_1 - p_2)\)

To test \(H_0: p_1 = p_2\) we compute \(z\)

Example: Exercise 10.7.2, page 397.
Paired Data for 2x2 Tables

McNemar’s test can be used to test the hypothesis that the discordant pairs are equally likely. The chi-square statistics is:

\[\chi^2 = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}} \]

with 1 degrees of freedom.

Example: Exercise 10.8.2, page 400.

Relative Risk and Odds ratio

Ratio of two probabilities is called relative risk. The odds ratio is the ratio of two odds under two different conditions.

Example: Exercise 10.9.2, page 408.

Confidence Interval for the Odds Ratio

The estimate of the odds ratio is:

\[\hat{\theta} = \frac{n_{11} n_{22}}{n_{12} n_{21}} \]

where \(n_{11}, n_{12}, n_{21}, \) and \(n_{22} \) are the table frequencies. For large \(n \), \(\log(\hat{\theta}) \) is approximately normal with mean \(\log(\theta) \) and standard error

\[\text{SE}_{\log(\theta^\wedge)} = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}} \]

This leads to a 100(1-\(\alpha \))% confidence interval for \(\log(\theta) \) as

\[\log(\hat{\theta}) \pm Z_{\alpha/2} \text{SE}_{\log(\theta^\wedge)} \]

The confidence interval for \(\theta \) is exponentiation of this interval.

Example: Exercise 10.9.6, page 409.