Comparison of Two Independent Populations (continued)

III. Inferences When σ_1 and σ_2 are Unknown

A Practical Problem: Suppose we are interested in comparison average systolic blood pressures (SBP) between males and females 45-50 years old. We collect the following data:

Male: 130 134 137 135 140 134
Female: 127 138 125 134

Question: Is SBP on average higher for males compared to females?

a. If the two populations are normal with unknown variances, then

b. A $100(1 - \alpha)\%$ confidence interval for $(\mu_1 - \mu_2)$ when the population standard deviations are unknown is:

Example: Systolic Blood Pressure
c. The *pooled two-sample procedure*

If \(\sigma_1 \) and \(\sigma_2 \) are unknown but \(\sigma_1 = \sigma_2 \), then a *pooled estimate* of the common variance is:

Using this estimate, a \(100(1 - \alpha) \)% confidence interval for \((\mu_1 - \mu_2) \) is

Example: Orange Juice Study
We would like to compare the taste of a “new” product to an “old” product based on samples of size 15 and 14. Suppose the mean of the first sample is 9.5 with a standard deviation of 1.3, and the mean of the second sample is 7.1 with a standard deviation 1.5.
IV. Hypothesis Testing

a. Null and Alternative Hypotheses

Null Hypothesis: A conjecture about a parameter of a population or parameters of two population.

Example: Systolic Blood Pressure

Alternative Hypothesis: Another conjecture about the same parameter(s).

Example: Systolic Blood Pressure

b. Test Statistics

The decision to reject or not reject the null hypothesis is based on a *statistic* computed from the sample. This is called the *test statistic*.

c. Use of Data and Possible Errors

The hypothesis will be tested based on information from *data*.

Possible Errors:

<table>
<thead>
<tr>
<th>Actual</th>
<th>H₀ is true</th>
<th>H₀ is false</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reject H₀</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α :
1 - β :
d. The t-test

To test \(H_0 : \mu_1 = \mu_2 \) compute \(t \)

and reject \(H_0 \) in favor of \(H_A \) of

\(H_A : \mu_1 < \mu_2 \) if \(t < -t_\alpha \)

\(H_A : \mu_1 > \mu_2 \) if \(t > t_\alpha \)

\(H_A : \mu_1 \neq \mu_2 \) if \(t < -t_{\alpha/2} \) or \(t > t_{\alpha/2} \)

Example: Systolic Blood Pressure
d. The *pooled two-sample procedure*

If σ_1 and σ_2 are unknown but $\sigma_1 = \sigma_2$, then use the *pooled Procedure*.

Example: The Orange Juice Study

p-value: