Predicting Missing Observations in Pesticide Data
Daniel Iong

Introduction

From 2007 to 2011, researchers at the University of California, Davis and Waterbourne Environmental, Inc
conducted a study to determine the relative ranking of potential areas of concern with respect to pesticide
exposure to sensitive and endangered aquatic species in the Sacramento River watershed, San Joaquin River,
and Bay-Delta estuary in California. The study involved the use of simulation modeling, historical water
quality monitoring, and Geographic Information System (GIS) analysis in a weight-of-evidence context. A
list of 40 pesticides published by the Central Valley Regional Water Quality Control Board in 2009 estimated
to pose the highest risk to aquatic life (presented below) was used in their analysis.

CAS CAS
Chemical Name NUMBER Type Chemical Name NUMBER Type
(S)-Metolachlor 87392-12-9 Herbicide Imidacloprid 105827-78-9 Insecticide
Abamectin 71751-41-2 Insecticide Indoxacarb 173584-44-6 Insecticide
Bifenthrin 82657-04-3 Insecticide Lambda-cyhalothrin 1465-08-6 Insecticide
Bromacil 314-40-9 Herbicide Malathion 121-75-5 Insecticide
Captan 133-06-2 Fungicide Mancozeb 8018-01-7 Fungicide
Carbaryl 63-25-2 Insecticide Maneb 12427-38-2 Fungicide
Chlorothalonil 1897-45-6 Fungicide Methomyl 16752-77-5 Insecticide
Chlorpyrifos 2921-88-2 Insecticide Naled 300-76-5 Insecticide
Cyhalofop-Butyl 122008-85-9 | Herbicide Oxyfluorfen 42874-03-3 Herbicide
Clomazone 81777-89-1 Herbicide Paraquat Dichloride 1910-42-5 Herbicide
Copper Hydroxide 20427-59-2 Fungicide Pendimethalin 40487-42-1 Herbicide
Copper Sulfate 7758-98-7 Fungicide Permethrin 52645-53-1 Insecticide
Cyfluthrin 68359-37-5 Insecticide Propanil 709-98-8 Herbicide
Cypermethrin 52315-07-8 Insecticide Propargite 2312-35-8 Insecticide
Deltamethrin 52918-63-5 Insecticide Pyraclostrobin 175013-18-0 Fungicide
Diazinon 333-41-5 Insecticide Simazine 122-34-9 Herbicide
Dimethoate 60-51-5 Insecticide Thiobencarb 28249-77-6 Herbicide
Diuron 330-54-1 Herbicide Tralomethrin 66841-25-6 Insecticide
Esfenvalerate 66230-04-4 Insecticide Trifluralin 1582-09-8 Herbicide
Hexazinone 51235-04-2 Herbicide Ziram 137-30-4 Fungicide

Figure 1: Pesticide selected for analysis by the Central Valley Regional Water Quality Control Board

Daily pesticide loads were estimated using 10-years of historical pesticide use data obtained from the
California Department of Pesticide Regulation’s (DPR) Pesticide Use Reporting (PUR) database. Loadings
from agricultural uses were predicted using the Pesticide Root Zone Model (PRZM) and the Rice Water
Quality (RICEWQ) model but for our study, we only consider the outputs of the PRZM model. More details
on the PRZM model are provided in the next section.



PRZM Model

The Pesticide Root Zone (PRZM) model was originally developed by the US Environmental Protection
Agency (EPA) to simulate the transport and transformation of agriculturally applied pesticides in the crop
root zone. The most recent version of the PRZM model is a one-dimensional, dynamic, compartmental model
used to simulate the movement of chemicals, not limited to pesticides, in unsaturated soil systems within and
immediately below the plant root zone. It allows users to perform simulations of potentially toxic chemicals
that are applied to soil or to plant foliage. (Suarez 2005)

In a study by researchers at the University of California, Davis and Waterborne Environmental, Inc that
lasted from 2007 to 2011, over 8.7 million individual PRZM simulations were conducted with each simulation
representing a unique combination of weather conditions, soil, crop, irrigation type, and pesticide application
history to produce “edge-of-field” estimates of pesticide runoff. The soil parameters were identified from the
soil survey geographic database. 169 different crops are present in the PUR database in which the chemicals
of interest were applied on. After accounting for similarities in crop canopy, rooting depth, and other factors
that affect crop growth, only 29 different crops were included in the model. Although 10 years (2000-2009) of
historical weather data was available, only the data for the year of application and the following year were
included in the simulations to reduce runtime of the PRZM model. Chemical environmental fate properties
used in the PRZM simulations include: solubility, organic carbon-water partition coefficient (Koc), and
aerobic soil metabolism. Pesticide use data were obtained from the PUR database, which contains information
about chemical application dates, amounts, and types at a 1 square mile (one PLSS section) resolution.
Results from a detailed survey conducted by the California Department of Water Resources to characterize
irrigation methods at the county-level were used in the simulation. The different irrigation methods include:
flood, furrow, drip, sprinkler, etc.

For our study, we only examined the daily pesticide loadings predicted by the PRZM model for the herbicide
Trifluralin in the year 2008. We chose this combination of pesticide and year because it had an adequate
amount of observations within the year and it is particularly toxic.

Overview of Papers Considered

We considered methods for handling missing observations in time series by implementing the methods
discussed in two papers: Shumway et. al. (1982) and Robinson (1980). Shumway et. al. (1982) proposes an
approach to smoothing and forecasting for time series with missing observations, which involves using an EM
algorithm in conjunction with Kalman smoothed estimators to estimate parameters in a state-space model by
maximum likelihood. In a general state-space model, the p x 1 vector series of interest x; is observed as a
component in the random regression model

ytZMtxt+vt,t:1,2,...,n

where M, is a known ¢ X p design matrix and the noise terms v;,t = 1,...,n, are uncorrelated and distributed
as N(0, R). Here, R is a ¢ x ¢ covariance matrix. We only observe y;,t = 1,...,n but we are mainly interested
in the random series x;, which is modelled as a first-order multivariate process of the form

l‘t:(I)l‘t_l—f—wt,t:l,...,n

where ® is a p X p transition matrix which describes the way x; changes over successive time periods. The
initial value, z, is assumed to to be a Gaussian distributed random vector with mean vector p and p x p
covariance matrix X. The noise terms, wy, are centered uncorrelated normal vectors with covariance matrix Q.
Shumway et. al. considers smoothing and forecasting time series with missing observations as a problem of
estimating the random process in the state space context described above. To obtain estimates for u, 3, @, @,
and R, Shumway et. al. minimizes the log likelihood below by an expectation-maximization (EM) algorithm.
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Robinson (1980) proposes the following method for analyzing Gaussian time series containing censored and/or
missing observation. Let X; be a Gaussian process and define p; = E(Xy), yeu = E(X Xy) — pe- Let X be a
vector containing realizations of X; at each time t, X be a vector containing the observed values of X, and
X be a vector containing the censored/missing values of X. Define p = F(X), po = E(Xo), e = E(Xe),
and ¥ = (04,). Let P = (Pc : Pog) be a permutation matrix such that X¢ = XP¢ and Xo = XPo.

Since X; is a Gaussian process,

X ~ N, 5) 1)
and XP ~ N(u, P’XP).
Moreover, X.|X, = x, ~ N(v,A) with
V= pe + (X0 — .UO)(PZ)ZPO)ilP:JEPc (2)
and
A =P'SP, - P.3P,(P.SP,) 'P/XP, (3)

When X, contains only missing observations, the best predictor of the j** element of X, is the j** element
of of v. When X, contains censored observations, it is not the best predictor but can still be used.

Analysis of Trifluralin in 2008

We applied the methods described above to Trifluralin levels in 2008 by assuming X in (1) is an AR(1)
process and estimating 3 using the EM algorithm in Shumway et. al (1982). Then, (2) is our prediction for
the missing observations in X and a 95% confidence interval is constructed using (3). PRZM model outputs
of Trifluralin in 2008 from April to November within a certain 6-mile-square townships determined by the
Public Land Survey System (PLSS) are plotted below, along with predictions of missing observations in blue
and the corresponding 95% confidence interval in grey.

The methods described above work well when the missing observations are scattered throughout the year
(as in Figure 2) and when the variation is not large (as in Figure 3). When there are many consecutive
observations (as in Figure 4), the predictions seem to follow a perfectly linear trend. When the variation
is large (as in Figure 5), the confidence intervals of the predictions are large. In addition, there are many
extreme values in this data like the one in mid-April in Figure 3. The confidence intervals also do not account
for seasonal differences. One would expect pesticide levels to be much lower in the fall and winter months
but the confidence intervals for predictions during these months in Figure 5 do not account for this.



Moving Forward

Although Shumway (1982) and Robinson (1980) are seminal papers in the time series literature, the methods
discussed can be improved to predict missing observations in daily pesticide levels more adequately by
extending the methods described above to account for spatial dependence structures, extreme values, and
seasonal differences.
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Figure 2: 2008 Trifluralin levels in Dos Palos, CA
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Figure 3: 2008 Trifluralin levels in Glenn, CA
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Figure 4: 2008 Trifluralin levels in Rancho Cordova, CA
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Figure 5: 2008 Trifluralin levels in Stockton, CA
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