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ABSTRACT

In this paper, we discuss concepts and methods of functional data analysis. The focus is on
the case where a pair of random functions is sampled per experimental unit. We discuss the
quantification of the dependency between pairs of random functions by means of functional
canonical analysis and linear modeling fbg-processes. Basic concepts of multivariate
analysis are extended to the domain of functional data analysis and the conditions under which
such an extension is feasible are discussed. Our main results demonstrate how basic properties
of canonical correlation and linear regression known from multivariate statistical analysis can
be restated for functional data, if appropriate conditions are satisfied.

1. INTRODUCTION

In many experiments, the observations consist of a sample of random
functions or curves. From the functional data analysis point of view, each

curve corresponds to one observation. This is an extension of multivariate
data analysis where observations consist of vectors of finite dimension. In
multivariate analysis, it is customary to use the spectral decomposition of
the covariance matrix of a random vector for principal components analysis,

the singular value decomposition of the cross-covariance matrix between a
pair of random vectors for canonical correlations, and least squares for the
multivariate linear model (Anderson, 1984).

*This research was supported in part by NSF grants DMS 98-03627 and DMS 99-71602.
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While these notions are fundamental in multivariate data analysis in order
to study dependency and linear relations between random vectors, their
extensions to functional data are not so obvious and require tools from
functional analysis. A basic problem in infinite-dimensional space is the
inversion of linear operators. Attempts to extend concepts of multivariate
data analysis to functional data analysis include the work of Dauxois, Pousse
and Romain (1982), who described the extension of classical multivariate
principal components analysis to the functional context and investigated
properties of the maximum variance criterion, as well as Rice and Silverman
(1991), who proposed a method to study the covariance structure of a sample
of random curves by estimating its eigenvalues and smoothed eigenfunctions.
Ramsay and Dalzell (1991) provided tools for studying principal components
and linear models for a sample of random curves, ugirgplines, derived
from a linear differential operator. Leurgans, Moyeed, and Silverman (1993)
applied smoothing splines with a special penalty term to functional canonical
correlation analysis. Ramsay and Silverman (1997) provide an overview on
current methods for functional analysis, with emphasis on various versions
of smoothing splines and base function expansions.

By using the Karhunen-Loéve decomposition (Ash and Gardner, 1985),
it is relatively straightforward to extend multivariate principal components
analysis from random vectors to random functions. However, as will be
seen in Section 2, such a straightforward extension from multivariate data
analysis to functional data analysis does not exist for canonical correlation
and regression. One main obstacle for this extension involves the inversion
of covariance operators. In contrast to the situation in the multivariate
case, this inversion is not feasible in infinite dimensional Hilbert spaces.
In this sense, canonical correlation is an inverse problem (He, 1999). In
this paper, we derive properties of canonical analysis and linear modeling
for random processes, extending properties which are well known for the
multivariate case. In Section 2, notation and basic assumptions as well
as canonical functional linear models are introduced for square integrable
stochastic processes. The main result for functional canonical analysis is
Theorem 3.1 of Section 3. Issues regarding the properties of functional linear
models are discussed in Section 4, and the main results are Theorems 4.3
and 4.4.

2. PRELIMINARIES

We introduce here notations and assumptions.
In multivariate analysis, the canonical correlation between two random
vectors,X € RP, Y € RY, can be defined as follows:
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For 1 < k < min(p, q), the kth canonical correlation,, and weight
vectorsu; andvy, satisfy

px= sup Coru”X,v"Y) = Cormu, X, v Y),
ueRP, veRY
and, in addition, fok > 1, the requirement that the canonical variable pair
(ui X, v Y) is uncorrelated to all the previoés- 1 canonical variable pairs.
A multivariate linear regression can be defined as

Y=a+BiX +e, (2.1)

wheree € RY, with E[e] = 0, and, € RP*% is the parameter matrix.

We will discuss here how to extend canonical correlation and linear
regression from finite dimensions to the infinite dimensional case. The
random processes we consider here will be assumed to be square integrable,
i.e., to be in theL, space of square integrable functions. For a stochastic
process with supporf’, on a probability spac&, X (1) = {X(t,w); » €
Q,t € T}, itholds thatX € L,(T), if EfT X?(t)dt < oo. For convenience,
we will always assume thal' and T;, 7> below are compact intervals.
We note thatL,(T) is a Hilbert space if equipped with the inner product
(f.8) = [; f()g()dt,for f, g € Lo(T), wheredt is the Lebesgue measure.
The results can be easily extended to cover more general measaes
scalar products in spacés(T; ).

Functional Canonical Correlation Analysis

Extending the concept of canonical correlatiorLtoprocesses, we define:
LetX € Ly(Ty),Y € L,(T,) be L,-processes. Fat > 1, the kth canonical
correlation and weight functiongy, uy, v, satisfy

Pk = sup Corr(<uv X>v <Uv Y)) = CO”((Mk, X>’ <vkv Y))v (22)
u€Ly(T1),veLa(T?)

where the canonical variates are
U = (ug, X), Vi, = (v, Y),

and in addition fork > 1, the canonical variable paiftUy, V;) is uncorre-
lated with all previougk — 1) canonical variable pairs.

In multivariate analysis, the maximization of (2.2) is equivalent to solving
for the eigenvalues of theross-correlation matrix

R = R;Y*RxyR;y%, (2.3)

whereRyx and Ryy, the covariance matrices & andY respectively, are
assumed to be invertible, aitky is the cross-covariance matrix &fandY
(Anderson, 1984). In the infinite-dimensional case, covariance matrices are
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generalized taovariance operators Specifically, the covariance operator
Ryx: La(Ty) — Lo(Th), is given by

Ryxu(s) :f ryx (s, Hu)dt, wu e Ly(Ty). (2.4)
i

where
rxx(s,1) = CoV[X(s), X(1)], s,1€T,

is the covariance function of proceXs Similarly we can define covariance
functions

ryy(s,1) =CoM[Y(s), Y(1)], s,t €Ty,

and ryy(s,1) =CoV[X(s),Y(®)], seTi, 1 €T

The covariance operat@sy: Lo(T2) — Lo(T2), Rxy: Lo(T2) — Lo(T),
andRyyx: Lo(T1) — L,(T,) are defined in complete analogy Ry y. We

note that we do not assume stationarity of the processes as in Brillinger
(1975, ch. 10) and that we are aiming at quantifying the dependency between
pairs of processes. Thus our target is different from that of a body of
work, exemplified by Roussas (1990), where the impact of dependency in
a sequence of low-dimensional data on nonparametric regression and related
approaches is considered.

One of the basic problems which sets infinite-dimensional data analysis
apart from multivariate statistical analysis is that the covariance operators are
not invertible. The reason is that a covariance operator of. aprocess
is a compact operator, which is not invertible in an infinite dimensional
Hilbert space. One can indeed show that canonical weight functions do not
necessarily exist for a giveh,-process (He, 1999). It is therefore of interest
to provide a sufficient condition for the existence of canonical correlations
and canonical weight functions fdt,-processes. This is the purpose of
Condition 2.1 below.

Using the Karhunen-Loéve decompositicghandY may be expanded as

X(s) = E[X(®)]+ Y _&bi(s), seT,

i=1

Y() = E[Y(O]+ ) i), 1 € T, (2.5)
i=1
with a sequence of uncorrelated random varialjlewith E(&;) = 0, and
a sequence of uncorrelated random varialglesvith E(z;) = 0. Here,
Axi = E[E?], Ayi = E[ZP], Yoy hx, < 00, T2 Ay, < 0o, and{(A;, 6,)},
{(¢;, ¢j)) are the eigenvalues and eigenfunctions of the covariance operators
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Ryxx andRyy. The following condition refers to expansion (2.5) and, as will
be seen in Theorem 3.1 below, ensures that functional canonical correlation
is well defined.

Condition 2.1.L,-processes andY satisfy

— E?[£¢] — E2[54]
(a) <00, or (b) — <X (2.6)
i,jZ:l )‘gﬁ)‘yf i,jzzl X")‘%j

Functional Linear Regression Model

Now we define a functional linear model fén-processes as follows (com-
pare Ramsay and Dalzell, 1991).

ConsiderL,-processesX € Ly(Ty), Y € Ly(T,). The functional linear
regression model is defined as

Y(t)=a() + / X (s)Bo(s, t)ds + €(t), 2.7)
Ty

wherefg € Lo(Ty x T5) is a parameter functiony € L,(7>) is an intercept
function, ande € L,(T3) is a random error process, with the assumption that
X ande are uncorrelated, and thak[¢(7)] = 0O, for all t.

By assuming, without loss of generality, thaX (r) = 0 andEY (s) = O,
for all ¢, s, one may simplify the linear model (2.7) to

Y(t):/ X (5)Bols, t)ds + €(r). (2.8)
i

Throughout the rest of the paper, unless stated otherwisé,,glfocesses
are assumed to be centered,, to have zero mean functions.
Define a random integral operat8i: Lo(Ty x To) — Lo(T») by

(LxP)() = f X(s)B(s,t)ds, for B e Ly(Ty X T).

i

Itis easy to see that the adjoint operatoilgfis L%: La(T2) — Lo(Tix T3),
defined by

(Lx2)(s, 1) = X (s)z(t), forall z € Ly(T>).
Note that (2.8) can be rewritten as
Y (1) = (LxPo) (@) + €(1). (2.9)

In multivariate analysis, we seek the solution of a linear regression model
(2.1) by finding the parameter matrig; e RP*9 which minimizes the
squared distancE||Y — 8 X||°>. When the covariance matrix &f is invertible,
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by classical least squares theory (seay, Anderson, 1984), the unique
minimizer can be found as

Bs = RyxRxy. (2.10)

For the functional linear model (2.9), we seek a parameter fungjosuch
that

By =arg miry., . p ) ENIY — LxBl>. (2.11)

However, (2.10) cannot be simply extended to the functional setting. In fact,
the solution to (2.11) is not unique, and there is the problem of the non-
existence of the inverse of the covarianRey in the infinite dimensional
case. Under the following condition, which refers to the Karhunen-Loéve
expansion (2.5), this problem can be alleviated by a suitable generalized
inverse, as we demonstrate in Theorems 4.3 and 4.4 below.

Condition 2.2.L,-processesX andY with the expansion (2.5) satisfy

R 2rg. 7.
> E [’f’;’] < . (2.12)
i,j=1 Xi

3. PROPERTIES OF FUNCTIONAL CANONICAL CORRELATION

In this section, we prove a main result, Theorem 3.1, which shows that basic
properties of canonical correlation as known for multivariate analysis can be
extended to the infinite dimensional case, if Condition 2.1 holds.

Let H; and H, be two Hilbert spaces, and ldt be a linear operator from
the subspacéd(A) c H; of Hy, called thedomainof A, into H,. The
imageR(A) = A(D(A)) = {Ah:h € D(A)}is called theangeof A. For a
compact self-adjoint operateron H, D(A™Y) = (f € H:Vh € H,3!f, s.t.
Af = h}. Then, referring to Karhunen-Loéve expansion (2.5), the domain of

operatorsR >, Ry;/* can be defined as

o0
D(RyY?) = {u € Lao(Ty): Y At (u.6)[° < o0
i=1

and Ryxu # 0if u # o},

D(R;Y?) = {v € LTy Ayt (w. ¢)|* < o0
i=1

and Ryyv # Oif v o},
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respectively (Conway, 1985).

THEOREM3.1L Assume thd.,-processesX andY satisfy Condition 2.1.
Then all canonical correlations are well defined. Specifically(letg;), i >
1 be theith non-zero eigenvalue and orthonormal eigenvectoRoR, and
let p; = Rq,;/~/*. Thenforl, j > 1,

(@) pi € D(RyY®), ¢ € D(Ryy"™);

(b) Pi = «/)T,, U = Rx}( Pi» andv; = Ry)%/z%;
(C)COFF(U,,U)— (M,,Rxxl/l.> <p17 Pﬂ —(Sz];
(d) Corr(V;, V) = (vi, Ryyvj) = (qi. q;) = 8ij;
(e)Corr(U;, V;) = (ui, Rxyv;) = (pi, Rq;) = pidij.

Note that Condition 2.1 allows the extension of the correlation operator
R to a Hilbert-Schmidt operator oh,(7>). Therefore, the operataR*R
has a countable sequence of eigenvalues which converges to zero. Before
proceeding with the proof of Theorem 3.1, we establish results regarding
the maximization properties of functional canonical correlation. We call the
smallest closed subspace containing a subspattee closure of, denoted
asH. To simplify notations, let

= D(Ry Y. = D(Ry}?).

PROPOSITION3.2 LetIl = {m C Lo(T»),dim(z- N H,) = k} be a
collection of subspaces ih,(75) with co-dimensions equal #a Then

IRq|I?
(a.) )\k+l—sup]espanql QI\}LOHZ “ “2 1and
2
(0) Ay1 = |nf sup|| q! :
Dyer gl

Proof. Letq € spargy, ..., g:}*. Then
IRq|I” = (Rq, Rq) = @ R*Rq)

o
(Z(t] gi quzl q, qz>ql>
= hilg q1)? kaq 4

i>k i>k

< Merllgll®.
This implies

IRq |1

2
gespantqy,....qi )+ llgll

Ayl 2
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Since spafyx, ..., gx)*" € I, then

. IRqlI?
Akr1 = Inf sup .
mell gen llqll?

This proves one direction. To prove the other direction,dete IT be
arbitrary, and leyy € sparigs, ..., giy1} N. Then

k+1

IRg1> =" xilgi. q)?
i=1

k+1
> M1 Y (4> @)° = hsallg ]
i=1

This implies
R 2
hya < sup%.
gen gl
Sincer is arbitrary, we immediately have the following two inequalities:
IRq]I?
A1 S R
qespar{ql,...,qk}i “q“
and

. IRq|l*
M1 < Inf sup .
mell gen ||Q||2

0

Proof of Theorem 3.1Ve omit the proof of (a) which can be found in He
(1999).
It is easy to see that the definition of canonical correlations is equivalent to

Pk = sup (u, Rxyv) = (ur, Rxyvi), (3.1)
u€Ly(T1),veLa(T?)

whereu andv are subject to

(u, Ryxu) =1, and (v, Ryyv) =1, 3.2)

and, in addition, fok > 1, to the requirement that
(Uk, Vi) is uncorelated withiU;, V;), fori =1,...,k— 1. (3.3)
Fori,j > 1, we denotes; = a;, i, = Ry pi, B = Ry g,

U = (i;,X), andV; = (§;,Y) and prove thaip;, i;, i;, U;, V;) satisfy
(3.1)—(3.3). We find
12~ 12~

E[(ji(jj] = (u;, RXXZZj> = <Rxxui’ Rxxuj> = (Pi,Pj) = Sijv
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o ~ ~ 1/2 ~ 1/2~
E[V;V;] = (v;, Ryyv;) = <Ry/in, Ry/yv]> (gi,qj) =6, and

~ = - - —1/2 —1/2
E[U;V;] = (u;, Rxyv;) = <Rxx/ Di> RXYRYY/ q;) = (pi, Rq;) = piéij,

so that the constraints of (3.2) and (3.3) are satisfied. Next, we show that

(u1, v1) is indeed the first pair of canonical weight functions forandY.
Foranyu € H, v € Hy, that satisfy (3.2), lep = RYZu, ¢ = Ry}v. Then

1/2 1/2
1= (u, Rxxu) = (Rygu, Ryiu) = | pl?,

and also|¢|| = 1. Hence,

‘ (u, Rxyv) | = X}l{/zp’ RXYR;;/ZCI”

||p|| IIqul (Cauchys inequality)

VAillgill (Proposition 3.2(a), fok = 1)
= VA1 =1 = (p1, Ra1) = (s, Rxyi).

<
<

We have

sup  (u, Rxyv) < (i1, Rxyvs). (3.4)

ueﬁl,veﬁz
SinceR(Rxy) C H1, (3.4) is equivalent to

sup (u, Rxyv) < (i1, Rxyvs).
ueLo(Ty),velo(T5)

We conclude that

sup (u, Rxyv) = (i1, Rxyv1).
uelLo(Ty),veLo(T2)
This implies that(ps, i1, 1) satisfy (3.1), and thereforgps, i1, 1) =
(p1,u1,v1). Now, fork > 1, andu € Hi,v € H, that satisfy (3.2) and
(3.3), letp = RYZu, q = Rl/zv Then, for/ < k, we have again that
Ilpll = lgll = 1. Furthermore

<P’ pt) = <l/t, RXX”i) = CO[T((”* X>5 <ui7 X)) = 05

and analogouslyg, ¢;) = 0. Hence,p € sparips, ..., pi_1}* N Hy, and
g € sparqx, ..., qr—1)*" N H,. Then, again by using Proposition 3.2(a), we
have

|(u, Rxyv)| = [(q, Rp)| < IpIl IRq|l < V/Adllgll = px
= (pk, Rqr) = (i, Rxyy),
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and

sup (u, ny'U> < <L~£k, nyf)k>.
ueﬁl,veﬁg

Using the same arguments as {0, v1), we have

sup (u, Rxyv) = (pi, Rqx) = (g, RxyUx).
uelLo(Ty),veLy(T2)

This shows thatgy, iy, ;) satisfy (3.1) under the constraints (3.2) and (3.3),
and hence that these are ttté canonical correlation and canonical weight
functions.

Parts (c)—(e) follow immediately from (b) and constraints (3.2) and (3.3).

O
Another characterization of functional canonical correlation is as follows.

PROPOSITION3.3 Let
[, = {m € Hy,codimm =k}, and II,={m € Hy, codimnm = k}.
Then
inf sup Corr((u, X), (v, Y)) = prs1.

1€, m2€M2 yerq ven,

Proof. The proof follows immediately from Theorem 3.1 and Proposition
3.2 by using the fact that = RY2u, g = Ry/v, and|Corr((u, X), (v, Y))| =

IRqll/llg]l- O

4. THE FUNCTIONAL LINEAR REGRESSION MODEL

In this section, we explore properties of functional linear regression and

investigate the extension of corresponding results known for linear regression
in multivariate analysis, where the dependent variable is a finite-dimensional
vector..

PROPOSITIONA.L Let By be a solution of the linear regression model
(2.9). Then

Bo € arg min E||Y — LxB%.
BeLa(T1xT2)

Proof. According to the usual model assumptions listed after (X@nd
€ are uncorrelated, which implies that for afye L,(Ty x T»), it holds that
E[{(LxB,€)] =0. Then

E|Y — LxBI? = E||(Lxfo+ €) — LxB|’
= E|Lxfo— LxBI? + Elle|* + 2E[(Lx o — LxB, €)]
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= E||Lxfo— LxBI*+ E|Y — Lxpoll?
> E|Y — LxpBol*

0

Motivated by the form of the least squares solution (2.10) for the multivari-
ate linear model, we define a linear integral oper&teg: Lo(Ty x T5) —
Lo(Ty x T) as

(TxxB)(s, 1) = fT (s, w)Bw, Ddw.
1

It is easy to see thalxx = E[L}Lx]. Moreover,I'xx|i,;) = Rxx,
wherel'x x|,y IS the restriction ol xx to Ly(71), and Ly(71) is treated
as an embedded subspacd.efT; x T,). Furthermore] 'y is a self-adjoint
nonnegative Hilbert-Schmidt operator. Denote the range of the op&ator
as RRxx), where RRyy) = sparid;|i > 1}, and{6;} is the eigenbasis fa¥
used in the Karhunen-Loéve decomposition (2.5). Then, the ranggxols
R(I'xx) = R(Rxx) x L2(T2).

PROPOSITIONA.2 LetB € Lo(Ty x T»). Then

B e arg min E||Y — LxB|?if and only ifPrry )8 = Preryy) Bos
BeL(T1xT3)

wherePgr, ) is the projection fromL,(71 x T) to R(I'xx).

Proof. From the proof of Proposition 4.13 is a minimizer ofE||Y —
LxBlI?ifand only if E||LxB — LxBoll?> = 0. Observing that
E|LxB — LxBoll* = E[{Lx(B — o), Lx(B — fo))]
= (B — Bo. E[(LYLx)(B — Bo)])
= (B — Po, Txx (B — po))
= [r¥ieB - B’
1/2

B is a minimizer if and only if|Tyx (8 — Bo)||?> = 0. This is equivalent to

F}l(/; = F)l(/;ﬂo, which in turn is equivalent togr, ) 8 = Praryfo- - O

Applying L% to both sides of (2.9), and taking expectations, one obtains
E(LyY)(s, 1) = E(LYLxPo)(s, 1) + E(Lye)(s, 1),
where

E(LYY)(s,1) = E[X(s)Y(t)] = rxy(s, 1),

E(LYLxPo)(s,1) = E / X ()X (w)Bo(w, t)dw = I'xxfo(s, 1),
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and
E(Lye) = E[Xe] =0.
Henceyyy = I'xxBo. Accordingly, we refer to
ryy = xxB, forB e Ly(Ty x T»), (4.2)
as thefunctional normal equation.

THEOREM4.3. Let X and Y be L,-processes with the expansion (2.5)
which satisfy Condition 2.2. Then,
(@ B = F}_(g}rxy exists and is the unique solution of (4.1)Rilxx);
(b) B; has the representation

9]

E[§:¢
B = i“ 6,()6(1):

i,j=1
(c) The set of the solutions of (4.1) is:
Bs + ker(T'xx) := {B§ + hlh € ker(Txx)},
where ke(T'yy) is the kernel space dfyy, i.e., kekT'yx) = {h €
L(T; x T»): Txxh = 0}.

Proof. Using the Karhunen-Loéve representation (2.5), expand the cross-
covariance function as

rxy(s,0) = Y E[&£16i(s)¢; (1).
i,j=1
The proof for (1) and (ii) follows from Conway (1985). To prove (jii), first
note thatg; + ker(I'yx) are the solutions of (4.1). On the other hand, let
Bo € La(Th x T») be a solution of (4.1). ThengR,,),Bo must also be a
solution for (4.1). Note that&r,, B0 € R(I'xx). From the uniqueness in
part (1), Ry ) Bo = Bg- Therefore o = S5 + h, with h € ker(T'xx). O

Combining Proposition 4.2 with Theorem 4.3, we immediately obtain the
following result, which provides a characterization of the set argg iy —

LxBI>.
THEOREMA4.4. Assume condition 2.4 holds f&randY. Then

arg rrginEHY — LxBII> = B; + ker(Txx),

and this coincides with the set of solutions for the functional normal equation
(4.2).
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The following result provides yet another characterization of functional
least squares. It extends the corresponding result from the multivariate linear
model to the functional linear model.

PROPOSITION4.5.  min  E|Y — LxB|I?> =tr(Ryy) — E||LxBoll>.
BeLa(T1xT2)

Proof.

min _ E|Y — LxBII* = E||Y — Lxpoll?
BeLo(T1xT?)

= E|lYI? + E| Lxpoll” — 2E[(Y, Lxpo)],
where
EIYI? = [ rovte.nde = tu(Rry),

and

E[(Y, LxPo)| = E[(LxBo+ €, LxPo)]

= E|Lxpoll* + (ELe, Po).
From the assumption for the functional linear model (2.9),
ELye = E[Xe] =0,

which completes the proof. O

The following theorem demonstrates an important property of functional
linear models: Any minimizer, arg minE||Y — Lx BlI?, maximizes the cor-
relation between the response and predictor functions. Again, the analogous
result is well known for the multivariate linear model.

THEOREMA4.6. Assume Condition 2.2 holds. Then

E2[{Y, LxB)]
E|YIPEILxBI?

arg rginEnY — LxB|I?> C arg max 4.2)

Proof. Observing that
[E[(Y, LxB)]}? = (ELL5 Y1, B = (rxy, B2
= (Tyx “rxrs T¥x B < IITxx “rxv IPITYxBIP
and

E|LxBI? = E[(LxB, LxB)] = (B, EILLxB))
= (B, TxxB) = ITYZBI2
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one obtains

E?[< Y, Lxp >] —1/2 2 2
<Y rxy I?/ENY |2, foranyp € Lo(Ty x Ta).
E|YI2E|LxBI? xx

Equality holds if and only if" ¥ xy = cI'Y+B, for some constant. That

is, B = cr;}(rxy = ¢fp, Which proves thag, satisfies (4.2). From Theorem
4.4, anyB € arg mirg E||Y — Lxp|? is of the formB = By + h, where
h € ker(Txx). ThereforeLxS = LxBo, and so (4.2) holds fgé as well. [
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