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ABSTRACT

In this paper, we discuss concepts and methods of functional data analysis. The focus is on
the case where a pair of random functions is sampled per experimental unit. We discuss the
quantification of the dependency between pairs of random functions by means of functional
canonical analysis and linear modeling forL2-processes. Basic concepts of multivariate
analysis are extended to the domain of functional data analysis and the conditions under which
such an extension is feasible are discussed. Our main results demonstrate how basic properties
of canonical correlation and linear regression known from multivariate statistical analysis can
be restated for functional data, if appropriate conditions are satisfied.

1. INTRODUCTION

In many experiments, the observations consist of a sample of random
functions or curves. From the functional data analysis point of view, each
curve corresponds to one observation. This is an extension of multivariate
data analysis where observations consist of vectors of finite dimension. In
multivariate analysis, it is customary to use the spectral decomposition of
the covariance matrix of a random vector for principal components analysis,
the singular value decomposition of the cross-covariance matrix between a
pair of random vectors for canonical correlations, and least squares for the
multivariate linear model (Anderson, 1984).

∗This research was supported in part by NSF grants DMS 98-03627 and DMS 99-71602.
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While these notions are fundamental in multivariate data analysis in order
to study dependency and linear relations between random vectors, their
extensions to functional data are not so obvious and require tools from
functional analysis. A basic problem in infinite-dimensional space is the
inversion of linear operators. Attempts to extend concepts of multivariate
data analysis to functional data analysis include the work of Dauxois, Pousse
and Romain (1982), who described the extension of classical multivariate
principal components analysis to the functional context and investigated
properties of the maximum variance criterion, as well as Rice and Silverman
(1991), who proposed a method to study the covariance structure of a sample
of random curves by estimating its eigenvalues and smoothed eigenfunctions.
Ramsay and Dalzell (1991) provided tools for studying principal components
and linear models for a sample of random curves, usingL-splines, derived
from a linear differential operator. Leurgans, Moyeed, and Silverman (1993)
applied smoothing splines with a special penalty term to functional canonical
correlation analysis. Ramsay and Silverman (1997) provide an overview on
current methods for functional analysis, with emphasis on various versions
of smoothing splines and base function expansions.

By using the Karhunen-Loève decomposition (Ash and Gardner, 1985),
it is relatively straightforward to extend multivariate principal components
analysis from random vectors to random functions. However, as will be
seen in Section 2, such a straightforward extension from multivariate data
analysis to functional data analysis does not exist for canonical correlation
and regression. One main obstacle for this extension involves the inversion
of covariance operators. In contrast to the situation in the multivariate
case, this inversion is not feasible in infinite dimensional Hilbert spaces.
In this sense, canonical correlation is an inverse problem (He, 1999). In
this paper, we derive properties of canonical analysis and linear modeling
for random processes, extending properties which are well known for the
multivariate case. In Section 2, notation and basic assumptions as well
as canonical functional linear models are introduced for square integrable
stochastic processes. The main result for functional canonical analysis is
Theorem 3.1 of Section 3. Issues regarding the properties of functional linear
models are discussed in Section 4, and the main results are Theorems 4.3
and 4.4.

2. PRELIMINARIES

We introduce here notations and assumptions.
In multivariate analysis, the canonical correlation between two random

vectors,X ∈ Rp, Y ∈ Rq, can be defined as follows:
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For 1 6 k 6 min(p, q), the kth canonical correlationρk, and weight
vectorsuk andvk , satisfy

ρk = sup
u∈Rp, v∈Rq

Corr(uT X, vT Y ) = Corr(uT
k X, vT

k Y ),

and, in addition, fork > 1, the requirement that the canonical variable pair
(uT

k X, vT
k Y ) is uncorrelated to all the previousk−1 canonical variable pairs.

A multivariate linear regression can be defined as

Y = α + βT
0 X + ε, (2.1)

whereε ∈ Rq, with E[ε] = 0, andβ0 ∈ Rp×q is the parameter matrix.
We will discuss here how to extend canonical correlation and linear

regression from finite dimensions to the infinite dimensional case. The
random processes we consider here will be assumed to be square integrable,
i.e., to be in theL2 space of square integrable functions. For a stochastic
process with supportT , on a probability space�, X(t) = {X(t, ω);ω ∈
�, t ∈ T }, it holds thatX ∈ L2(T ), if E

∫
T

X2(t)dt < ∞. For convenience,
we will always assume thatT and T1, T2 below are compact intervals.
We note thatL2(T ) is a Hilbert space if equipped with the inner product
〈f, g〉 = ∫

T
f (t)g(t)dt, for f, g ∈ L2(T ), wheredt is the Lebesgue measure.

The results can be easily extended to cover more general measuresµ and
scalar products in spacesL2(T ;µ).

Functional Canonical Correlation Analysis

Extending the concept of canonical correlation toL2-processes, we define:
LetX ∈ L2(T1), Y ∈ L2(T2) beL2-processes. Fork > 1, the kth canonical

correlation and weight functions,ρk, uk, vk, satisfy

ρk = sup
u∈L2(T1),v∈L2(T2)

Corr(〈u,X〉, 〈v, Y 〉) = Corr(〈uk,X〉, 〈vk, Y 〉), (2.2)

where the canonical variates are

Uk = 〈uk,X〉, Vk = 〈vk, Y 〉,
and in addition fork > 1, the canonical variable pair(Uk, Vk) is uncorre-
lated with all previous(k − 1) canonical variable pairs.

In multivariate analysis, the maximization of (2.2) is equivalent to solving
for the eigenvalues of thecross-correlation matrix,

R = R
−1/2
XX RXYR

−1/2
YY , (2.3)

whereRXX andRYY , the covariance matrices ofX andY respectively, are
assumed to be invertible, andRXY is the cross-covariance matrix ofX andY
(Anderson, 1984). In the infinite-dimensional case, covariance matrices are
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generalized tocovariance operators. Specifically, the covariance operator
RXX: L2(T1) → L2(T1), is given by

RXXu(s) =
∫

T1

rXX(s, t)u(t)dt, u ∈ L2(T1). (2.4)

where

rXX(s, t) = Cov
[
X(s),X(t)

]
, s, t ∈ T1,

is the covariance function of processX. Similarly we can define covariance
functions

rYY (s, t) = cov
[
Y (s), Y (t)

]
, s, t ∈ T2,

and rXY (s, t) = Cov
[
X(s), Y (t)

]
, s ∈ T1, t ∈ T2.

The covariance operatorsRYY : L2(T2) → L2(T2), RXY : L2(T2) → L2(T1),
andRYX: L2(T1) → L2(T2) are defined in complete analogy toRXX. We
note that we do not assume stationarity of the processes as in Brillinger
(1975, ch. 10) and that we are aiming at quantifying the dependency between
pairs of processes. Thus our target is different from that of a body of
work, exemplified by Roussas (1990), where the impact of dependency in
a sequence of low-dimensional data on nonparametric regression and related
approaches is considered.

One of the basic problems which sets infinite-dimensional data analysis
apart from multivariate statistical analysis is that the covariance operators are
not invertible. The reason is that a covariance operator of anL2-process
is a compact operator, which is not invertible in an infinite dimensional
Hilbert space. One can indeed show that canonical weight functions do not
necessarily exist for a givenL2-process (He, 1999). It is therefore of interest
to provide a sufficient condition for the existence of canonical correlations
and canonical weight functions forL2-processes. This is the purpose of
Condition 2.1 below.

Using the Karhunen-Loève decomposition,X andY may be expanded as

X(s) = E
[
X(s)

] +
∞∑
i=1

ξiθi(s), s ∈ T1,

Y (t) = E
[
Y (t)

] +
∞∑
i=1

ζiφi(t), t ∈ T2, (2.5)

with a sequence of uncorrelated random variablesξi with E(ξi) = 0, and
a sequence of uncorrelated random variablesζi with E(ζi) = 0. Here,
λXi = E[ξ2

i ], λYi = E[ζ 2
i ], ∑∞

i=1 λXi
< ∞, 6∞

i=1λYi
< ∞, and{(λi, θi)},

{(ζj , φj )} are the eigenvalues and eigenfunctions of the covariance operators
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RXX andRYY . The following condition refers to expansion (2.5) and, as will
be seen in Theorem 3.1 below, ensures that functional canonical correlation
is well defined.

Condition 2.1.L2-processesX andY satisfy

(a)

∞∑
i,j=1

E2[ξiζi]
λ2

XiλYj

< ∞, or (b)

∞∑
i,j=1

E2[ξiζi]
λXiλ

2
Yj

< ∞. (2.6)

Functional Linear Regression Model

Now we define a functional linear model forL2-processes as follows (com-
pare Ramsay and Dalzell, 1991).

ConsiderL2-processesX ∈ L2(T1), Y ∈ L2(T2). The functional linear
regression model is defined as

Y (t) = α(t) +
∫

T1

X(s)β0(s, t)ds + ε(t), (2.7)

whereβ0 ∈ L2(T1 × T2) is a parameter function,α ∈ L2(T2) is an intercept
function, andε ∈ L2(T2) is a random error process, with the assumption that
X andε are uncorrelated, and thatE[ε(t)] = 0, for all t.

By assuming, without loss of generality, thatEX(t) = 0 andEY(s) = 0,
for all t , s, one may simplify the linear model (2.7) to

Y (t) =
∫

T1

X(s)β0(s, t)ds + ε(t). (2.8)

Throughout the rest of the paper, unless stated otherwise, allL2-processes
are assumed to be centered,i.e., to have zero mean functions.

Define a random integral operatorLX: L2(T1 × T2) → L2(T2) by

(LXβ)(t) =
∫

T1

X(s)β(s, t)ds, for β ∈ L2(T1 × T2).

It is easy to see that the adjoint operator ofLX isL∗
X: L2(T2) → L2(T1×T2),

defined by

(L∗
Xz)(s, t) = X(s)z(t), for all z ∈ L2(T2).

Note that (2.8) can be rewritten as

Y (t) = (LXβ0)(t) + ε(t). (2.9)

In multivariate analysis, we seek the solution of a linear regression model
(2.1) by finding the parameter matrixβ∗

0 ∈ Rp×q which minimizes the
squared distanceE‖Y−βX‖2. When the covariance matrix ofX is invertible,
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by classical least squares theory (see,e.g., Anderson, 1984), the unique
minimizer can be found as

β∗
0 = R−1

XXRXY . (2.10)

For the functional linear model (2.9), we seek a parameter functionβ∗
0 such

that

β∗
0 = arg minβ∈L2(T1×T2)E‖Y − LXβ‖2. (2.11)

However, (2.10) cannot be simply extended to the functional setting. In fact,
the solution to (2.11) is not unique, and there is the problem of the non-
existence of the inverse of the covarianceRXX in the infinite dimensional
case. Under the following condition, which refers to the Karhunen-Loève
expansion (2.5), this problem can be alleviated by a suitable generalized
inverse, as we demonstrate in Theorems 4.3 and 4.4 below.

Condition 2.2.L2-processesX andY with the expansion (2.5) satisfy

∞∑
i,j=1

E2[ξiζi]
λ2

Xi

< ∞. (2.12)

3. PROPERTIES OF FUNCTIONAL CANONICAL CORRELATION

In this section, we prove a main result, Theorem 3.1, which shows that basic
properties of canonical correlation as known for multivariate analysis can be
extended to the infinite dimensional case, if Condition 2.1 holds.

Let H1 andH2 be two Hilbert spaces, and letA be a linear operator from
the subspaceD(A) ⊂ H1 of H1, called thedomainof A, into H2. The
imageR(A) = A(D(A)) = {Ah : h ∈ D(A)} is called therangeof A. For a
compact self-adjoint operatorA onH , D(A−1) = {f ∈ H : ∀h ∈ H , ∃!f , s.t.
Af = h}. Then, referring to Karhunen-Loève expansion (2.5), the domain of
operatorsR−1/2

XX , R
−1/2
YY can be defined as

D(R
−1/2
XX ) =

{
u ∈ L2(T1) :

∞∑
i=1

λ−1
Xi

∣∣〈u, θi〉
∣∣2

< ∞

and RXXu 6= 0 if u 6= 0
}
,

D(R
−1/2
YY ) =

{
v ∈ L2(T2) :

∞∑
i=1

λ−1
Y i

∣∣〈v, φi〉
∣∣2

< ∞

and RYYv 6= 0 if v 6= 0
}
,



VSP(ROUS) 2000/06/14 Prn:23/06/2000; 8:43 F:ROUS12.tex; VTeX/AS p. 7 (460-537)

From Multivariate to Functional Data 7

respectively (Conway, 1985).

THEOREM3.1. Assume theL2-processesX and Y satisfy Condition 2.1.
Then all canonical correlations are well defined. Specifically, let(λi, qi), i >
1 be theith non-zero eigenvalue and orthonormal eigenvector ofR∗R, and
let pi = Rqi/

√
λi. Then forI, j > 1,

(a) pi ∈ D(R
−1/2
XX ), qi ∈ D(R

−1/2
YY );

(b) ρi = √
λi , ui = R

−1/2
XX pi, andvi = R

−1/2
YY qi ;

(c) Corr(Ui, Uj) = 〈ui, RXXuj 〉 = 〈pi, pj 〉 = δij ;
(d) Corr(Vi, Vj ) = 〈vi, RYY vj 〉 = 〈qi , qj 〉 = δij ;
(e)Corr(Ui, Vj ) = 〈ui, RXYvj 〉 = 〈pi, Rqj 〉 = ρiδij .

Note that Condition 2.1 allows the extension of the correlation operator
R to a Hilbert-Schmidt operator onL2(T2). Therefore, the operatorR∗R
has a countable sequence of eigenvalues which converges to zero. Before
proceeding with the proof of Theorem 3.1, we establish results regarding
the maximization properties of functional canonical correlation. We call the
smallest closed subspace containing a subspaceH the closure ofH , denoted
asH . To simplify notations, let

H1 = D(R
−1/2
XX ), H2 = D(R

−1/2
YY ).

PROPOSITION3.2. Let 5 = {π ⊂ L2(T2), dim(π⊥ ∩ H 2) = k} be a
collection of subspaces inL2(T2) with co-dimensions equal tok. Then

(a) λk+1 = supq∈span{q1,...,qk}⊥∩H2

‖Rq‖2

‖q‖2
, and

(b) λk+1 = inf
π∈5

sup
q∈π

‖Rq‖2

‖q‖2
.

Proof. Let q ∈ span{q1, . . . , qk}⊥. Then

‖Rq‖2 = 〈Rq,Rq〉 = 〈q,R∗Rq〉
=

〈 ∞∑
i=1

〈q, qi〉qi,

∞∑
i=1

λi〈q, qi 〉qi

〉
=

∑
i>k

λi〈q, qi〉2 6
∑
i>k

λk+1〈q, qi 〉2

6 λk+1‖q‖2.

This implies

λk+1 > sup
q∈span{q1,...,qk}⊥

‖Rq‖2

‖q‖2
.
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Since span{q1, . . . , qk}⊥ ∈ 5, then

λk+1 > inf
π∈5

sup
q∈π

‖Rq‖2

‖q‖2
.

This proves one direction. To prove the other direction, letπ ∈ 5 be
arbitrary, and letq ∈ span{q1, . . . , qk+1} ∩ π . Then

‖Rq‖2 =
k+1∑
i=1

λi〈qi , q〉2

> λk+1

k+1∑
i=1

〈qi, q〉2 = λk+1‖q‖2.

This implies

λk+1 6 sup
q∈π

‖Rq‖2

‖q‖2
.

Sinceπ is arbitrary, we immediately have the following two inequalities:

λk+1 6 sup
q∈span{q1,...,qk}⊥

‖Rq‖2

‖q‖2
,

and

λk+1 6 inf
π∈5

sup
q∈π

‖Rq‖2

‖q‖2
.

�
Proof of Theorem 3.1.We omit the proof of (a) which can be found in He

(1999).
It is easy to see that the definition of canonical correlations is equivalent to

ρk = sup
u∈L2(T1),v∈L2(T2)

〈u,RXYv〉 = 〈uk,RXYvk〉, (3.1)

whereu andv are subject to

〈u,RXXu〉 = 1, and 〈v,RYY v〉 = 1, (3.2)

and, in addition, fork > 1, to the requirement that

(Uk, Vk) is uncorelated with(Ui, Vi), for i = 1, . . . , k − 1. (3.3)

For i, j > 1, we denoteρ̃i = √
λi, ũi = R

−1/2
XX pi , ṽi = R

−1/2
YY qi ,

Ũi = 〈ũi , X〉, and Ṽi = 〈ṽi , Y 〉 and prove that(ρ̃i, ũi , ṽi , Ũi, Ṽi) satisfy
(3.1)–(3.3). We find

E[ŨiŨj ] = 〈ũi , RXXũj 〉 = 〈R1/2
XXũi, R

1/2
XXũj 〉 = 〈pi, pj 〉 = δij ,
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E[Ṽi Ṽj ] = 〈ṽi , RYY ṽj 〉 = 〈R1/2
YY ṽi , R

1/2
YY ṽj 〉 = 〈qi , qj 〉 = δij , and

E[ŨiṼj ] = 〈ũi , RXY ṽj 〉 = 〈R−1/2
XX pi, RXYR

−1/2
YY qj 〉 = 〈pi, Rqj 〉 = ρiδij ,

so that the constraints of (3.2) and (3.3) are satisfied. Next, we show that
(ũ1, ṽ1) is indeed the first pair of canonical weight functions forX andY .
For anyu ∈ H1, v ∈ H2, that satisfy (3.2), letp = R

1/2
XXu, q = R

1/2
YY v. Then

1 = 〈u,RXXu〉 = 〈R1/2
XXu,R

1/2
XXu〉 = ‖p‖2,

and also‖q‖ = 1. Hence,∣∣〈u,RXYv〉∣∣ = ∣∣〈R−1/2
XX p,RXYR

−1/2
YY q〉∣∣

= ∣∣〈p,Rq〉∣∣
6 ‖p‖ ‖Rq‖ (Cauchys inequality)

6
√

λ1‖q1‖ (Proposition 3.2(a), fork = 1)

= √
λ1 = ρ̃1 = 〈p1, Rq1〉 = 〈ũ1, RXY ṽ1〉.

We have

sup
u∈H1,v∈H2

〈u,RXYv〉 6 〈ũ1, RXY ṽ1〉. (3.4)

SinceR(RXY ) ⊆ H 1, (3.4) is equivalent to

sup
u∈L2(T1),v∈L2(T2)

〈u,RXY v〉 6 〈ũ1, RXY ṽ1〉.

We conclude that

sup
u∈L2(T1),v∈L2(T2)

〈u,RXY v〉 = 〈ũ1, RXY ṽ1〉.

This implies that(ρ̃1, ũ1, ṽ1) satisfy (3.1), and therefore,(ρ̃1, ũ1, ṽ1) =
(ρ1, u1, v1). Now, for k > 1, andu ∈ H1, v ∈ H2 that satisfy (3.2) and
(3.3), let p = R

1/2
XXu, q = R

1/2
YY v. Then, forI < k, we have again that

‖p‖ = ‖q‖ = 1. Furthermore,

〈p,pi〉 = 〈u,RXXui〉 = Corr(〈u,X〉, 〈ui,X〉) = 0,

and analogously〈q, qi〉 = 0. Hence,p ∈ span{p1, . . . , pk−1}⊥ ∩ H1, and
q ∈ span{q1, . . . , qk−1}⊥ ∩ H2. Then, again by using Proposition 3.2(a), we
have ∣∣〈u,RXY v〉∣∣ = ∣∣〈q,Rp〉∣∣ 6 ‖p‖ ‖Rq‖ 6

√
λk‖q‖ = ρ̃k

= 〈pk,Rqk〉 = 〈ũk, RXY ṽk〉,
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and

sup
u∈H1,v∈H2

〈u,RXYv〉 6 〈ũk, RXY ṽk〉.

Using the same arguments as for(ũ1, ṽ1), we have

sup
u∈L2(T1),v∈L2(T2)

〈u,RXYv〉 = 〈pk,Rqk〉 = 〈ũk, RXY ṽk〉.

This shows that(ρ̃k, ũk, ṽk) satisfy (3.1) under the constraints (3.2) and (3.3),
and hence that these are thekth canonical correlation and canonical weight
functions.

Parts (c)–(e) follow immediately from (b) and constraints (3.2) and (3.3).
�

Another characterization of functional canonical correlation is as follows.

PROPOSITION3.3. Let

51 = {π ∈ H1, codimπ = k}, and 52 = {π ∈ H2, codimπ = k}.
Then

inf
π1∈51,π2∈52

sup
u∈π1,v∈π2

Corr
(〈u,X〉, 〈v, Y 〉) = ρk+1.

Proof. The proof follows immediately from Theorem 3.1 and Proposition
3.2 by using the fact thatp = R

1/2
XXu, q = R

1/2
YY v, and|Corr(〈u,X〉, 〈v, Y 〉)| =

‖Rq‖/‖q‖. �

4. THE FUNCTIONAL LINEAR REGRESSION MODEL

In this section, we explore properties of functional linear regression and
investigate the extension of corresponding results known for linear regression
in multivariate analysis, where the dependent variable is a finite-dimensional
vector..

PROPOSITION4.1. Let β0 be a solution of the linear regression model
(2.9). Then

β0 ∈ arg min
β∈L2(T1×T2)

E‖Y − LXβ‖2.

Proof. According to the usual model assumptions listed after (2.7),X and
ε are uncorrelated, which implies that for anyβ ∈ L2(T1 × T2), it holds that
E[〈LXβ, ε〉] = 0. Then

E‖Y − LXβ‖2 = E
∥∥(LXβ0 + ε) − LXβ

∥∥2

= E‖LXβ0 − LXβ‖2 + E‖ε‖2 + 2E
[〈LXβ0 − LXβ, ε〉]
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= E‖LXβ0 − LXβ‖2 + E‖Y − LXβ0‖2

> E‖Y − LXβ0‖2.

�
Motivated by the form of the least squares solution (2.10) for the multivari-

ate linear model, we define a linear integral operator0XX: L2(T1 × T2) →
L2(T1 × T2) as

(0XXβ)(s, t) =
∫

T1

rXX(s,w)β(w, t)dw.

It is easy to see that0XX = E[L∗
XLX]. Moreover,0XX|L2(T1) = RXX,

where0XX|L2(T1) is the restriction of0XX to L2(T1), andL2(T1) is treated
as an embedded subspace ofL2(T1 × T2). Furthermore,0XX is a self-adjoint
nonnegative Hilbert-Schmidt operator. Denote the range of the operatorRXX

as R(RXX), where R(RXX) = span{θi|i > 1}, and{θi} is the eigenbasis forX
used in the Karhunen-Loève decomposition (2.5). Then, the range of0XX is
R(0XX) = R(RXX) × L2(T2).

PROPOSITION4.2. Letβ ∈ L2(T1 × T2). Then

β ∈ arg min
β∈L2(T1×T2)

E‖Y − LXβ‖2 if and only ifPR(0XX)β = PR(0XX)β0,

wherePR(0XX) is the projection fromL2(T1 × T2) to R(0XX).

Proof. From the proof of Proposition 4.1,β is a minimizer ofE‖Y −
LXβ‖2 if and only if E‖LXβ − LXβ0‖2 = 0. Observing that

E‖LXβ − LXβ0‖2 = E
[〈LX(β − β0),LX(β − β0)〉

]
= 〈

β − β0, E
[
(L∗

XLX)(β − β0)
]〉

= 〈
β − β0, 0XX(β − β0)

〉
= ∥∥0

1/2
XX(β − β0)

∥∥2
,

β is a minimizer if and only if‖01/2
XX(β − β0)‖2 = 0. This is equivalent to

0
1/2
XXβ = 0

1/2
XXβ0, which in turn is equivalent to PR(0XX)β = PR(0XX)β0. �

Applying L∗
X to both sides of (2.9), and taking expectations, one obtains

E(L∗
XY )(s, t) = E(L∗

XLXβ0)(s, t) + E(L∗
Xε)(s, t),

where

E(L∗
XY )(s, t) = E

[
X(s)Y (t)

] = rXY (s, t),

E(L∗
XLXβ0)(s, t) = E

∫
X(s)X(w)β0(w, t)dw = 0XXβ0(s, t),
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and

E(L∗
Xε) = E[Xε] = 0.

Hence,rXY = 0XXβ0. Accordingly, we refer to

rXY = 0XXβ, for β ∈ L2(T1 × T2), (4.1)

as thefunctional normal equation.

THEOREM4.3. Let X and Y be L2-processes with the expansion (2.5)
which satisfy Condition 2.2. Then,

(a) β∗
0 = 0−1

XXrXY exists and is the unique solution of (4.1) inR(0XX);

(b) β∗
0 has the representation

β∗
0(s, t) =

∞∑
i,j=1

E[ξiζi]
λXi

θi(s)φj (t);

(c) The set of the solutions of (4.1) is:

β∗
0 + ker(0XX) := {

β∗
0 + h|h ∈ ker(0XX)

}
,

where ker(0XX) is the kernel space of0XX, i.e., ker(0XX) = {h ∈
L(T1 × T2): 0XXh = 0}.

Proof. Using the Karhunen-Loève representation (2.5), expand the cross-
covariance function as

rXY (s, t) =
∞∑

i,j=1

E[ξiζj ]θi(s)φj (t).

The proof for (I) and (ii) follows from Conway (1985). To prove (iii), first
note thatβ∗

0 + ker(0XX) are the solutions of (4.1). On the other hand, let
β0 ∈ L2(T1 × T2) be a solution of (4.1). Then PR(0XX)β0 must also be a
solution for (4.1). Note that PR(0XX)β0 ∈ R(0XX). From the uniqueness in
part (I), PR(0XX)β0 = β∗

0. Therefore,β0 = β∗
0 + h, with h ∈ ker(0XX). �

Combining Proposition 4.2 with Theorem 4.3, we immediately obtain the
following result, which provides a characterization of the set arg minβ E‖Y −
LXβ‖2.

THEOREM4.4. Assume condition 2.4 holds forX andY . Then

arg min
β

E‖Y − LXβ‖2 = β∗
0 + ker(0XX),

and this coincides with the set of solutions for the functional normal equation
(4.1).
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The following result provides yet another characterization of functional
least squares. It extends the corresponding result from the multivariate linear
model to the functional linear model.

PROPOSITION4.5. min
β∈L2(T1×T2)

E‖Y − LXβ‖2 = tr(RYY ) − E‖LXβ0‖2.

Proof.

min
β∈L2(T1×T2)

E‖Y − LXβ‖2 = E‖Y − LXβ0‖2

= E‖Y‖2 + E‖LXβ0‖2 − 2E
[〈Y,LXβ0〉

]
,

where

E‖Y‖2 =
∫

rYY (t, t)dt = tr(RYY ),

and

E
[〈Y,LXβ0〉

] = E
[〈LXβ0 + ε,LXβ0〉

]
= E‖LXβ0‖2 + 〈EL∗

Xε, β0〉.
From the assumption for the functional linear model (2.9),

EL∗
Xε = E[Xε] = 0,

which completes the proof. �

The following theorem demonstrates an important property of functional
linear models: Any minimizer, arg minβ E‖Y − LXβ‖2, maximizes the cor-
relation between the response and predictor functions. Again, the analogous
result is well known for the multivariate linear model.

THEOREM4.6. Assume Condition 2.2 holds. Then

arg min
β

E‖Y − LXβ‖2 ⊆ arg max
β

E2[〈Y,LXβ〉]
E‖Y‖2E‖LXβ‖2

. (4.2)

Proof. Observing that{
E

[〈Y,LXβ〉]}2 = 〈
E[L∗

XY ], β〉2 = 〈rXY , β〉2

= 〈0−1/2
XX rXY , 0

1/2
XXβ〉2 6 ‖0−1/2

XX rXY‖2‖01/2
XXβ‖2

and

E‖LXβ‖2 = E
[〈LXβ,LXβ〉] = 〈

β,E[L∗
XLXβ

]〉
= 〈β,0XXβ〉 = ‖01/2

XXβ‖2,
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one obtains

E2[< Y,LXβ >]
E‖Y‖2E‖LXβ‖2

6 ‖0−1/2
XX rXY ‖2/E‖Y‖2, for anyβ ∈ L2(T1 × T2).

Equality holds if and only if0−1/2
XX rXY = c0

1/2
XXβ, for some constantc. That

is, β = c0−1
XXrXY = cβ0, which proves thatβ0 satisfies (4.2). From Theorem

4.4, anyβ ∈ arg minβ E‖Y − LXβ‖2 is of the formβ = β0 + h, where
h ∈ ker(0XX). Therefore,LXβ = LXβ0, and so (4.2) holds forβ as well. �
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