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Abstract

In some regression problems we observe a ‘response’ Yti to level t of a ‘treatment’ applied

to an individual with level Xi of a given characteristic, where it has been established that

response is monotone increasing in the level of the treatment. A related problem arises when

estimating conditional distributions, where the raw data are typically independent and iden-

tically distributed pairs (Xi, Zi), and Yti denotes the proportion of Zi’s that do not exceed t.

We expect the regression means gt(x) = E(Yti|Xi = x) to enjoy the same order relation as

the responses, i.e. gt ≤ gs whenever s ≤ t. This requirement is necessary in order to obtain

bona fide conditional distribution functions, for example. If we estimate gt by passing a linear

smoother through each data set Xt = {(Xi, Yti) : 1 ≤ i ≤ n} then the order-preserving property

is guaranteed if and only if the smoother has nonnegative weights. However, in such cases the

estimators generally have high levels of boundary bias. On the other hand, the order-preserving

property usually fails for linear estimators with low boundary bias, such as local linear estima-

tors, or kernel estimators employing boundary kernels. This failure is generally most serious

at boundaries of the distribution of the explanatory variables, and ironically it is often in just

those places that estimation is of greatest interest, since responses there imply constraints on

the larger population. In this paper we suggest nonlinear, order-invariant estimators for non-

parametric regression, and discuss their properties. The resulting estimators are applied to

the estimation of conditional distribution functions at endpoints and also change-points. The

availability of bona fide distribution function estimators at endpoints also enables the compu-

tation of change-point diagnostics that are based on differences in a suitable norm between two

estimated conditional distribution functions, obtained from data that fall into one-sided bins.

Key words: Bias reduction, boundary effect, change-point, endpoint, linear methods, local linear

estimator, monotonicity, Nadaraya-Watson estimator, prediction.
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1. Introduction

1.1. Regression problems requiring order-preserving solutions. Suppose we observe a ‘response,’

Yti, to level t of a ‘treatment’ applied to an individual with level Xi of a given characteristic,

where it has been established that response is monotone across the range of the treatment. For

instance, Yti might represent the height at age t years of the ith child in a growth study, where

the child’s mother’s height was Xi units. We expect the regression means, E(Yti|Xi = x), to

be monotone in t for fixed x, but monotonicity of the estimators is not assured by conventional

nonparametric regression smoothers. Difficulties with monotonicity can be particularly acute

towards the ends of the design interval. In many applications it is on just those places that the

majority of interest centers.

A major motivating example to consider in this setting is the nonparametric estimation of

a conditional distribution function. This problem is of interest in its own right, but also has

applications to the estimation of conditional density functions and quantile functions which

usually are derived from a suitable conditional distribution function estimate. Suppose we

observe a sequence of independent and identically distributed data pairs (Xi, Zi), for 1 ≤ i ≤ n,

and wish to construct an estimator F̂ (·|x) of the conditional distribution function F (t|x) ≡
P (Z ≤ t|X = x). This problem admits a simple solution in terms of nonparametric regression,

since if we define Yti = I(Zi ≤ t) then F (t|x) equals the mean of Yti given Xi = x. We would

of course require F̂ (t|x) to be a bona fide distribution function estimate, i.e., to be monotone

increasing in t, but this property is not guaranteed by passing conventional regression smoothers

through the data set Xt = {(Xi, Yti) : 1 ≤ i ≤ n}.
Estimating a conditional distribution function at a boundary or endpoint of the support of

the covariates is of special interest, for two reasons. First, we may wish to construct prediction

intervals for a new observation that will be made right at the boundary of the current domain

of the covariate, as is often the case when observations are made sequentially involving regular

small increments of the covariate, such as in quality control or environmental applications. Such

prediction intervals are conveniently based on estimated conditional distributions. Secondly,

for the detection and estimation of change-points that may involve changes in features of the

conditional distribution that are more general than just mean changes, the estimation of bona

fide conditional distribution functions at endpoints will provide an essential tool. Differences

in a suitable metric between estimated left- and right-sided conditional distribution functions,

based on one-sided windows placed around an assumed change-point location, and taken as a

function of this assumed location, provide change-point diagnostics.
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The present paper addresses this problem by introducing the more general perspective

of order-preserving nonparametric regression. Specifically, we address sequences of data sets

Xt = {(Xi, Yti) : 1 ≤ i ≤ n}, for t ∈ T , where the explanatory variables Xi are common to each

Xt, and T denotes an interval which might be either bounded or unbounded, either discrete or

in the continuum. The pairs (Xi, Yti) may often be regarded as observations of a generic (X, Yt),

say. The Yti’s are ordered, in the sense that for each i, Ysi ≤ Yti whenever s ≤ t. Therefore, we

expect the regression means gt(x) = E(Yt|X = x) to be ordered: gs(x) ≤ gt(x) whenever s ≤ t

and x is in the support interval I of the distribution of X. We wish to construct a sequence

of estimators {ĝt : t ∈ T }, of the set of functions {gt : t ∈ T }, which enjoys the same ordering

property. If it does, then we say the estimators are order-preserving on I. We shall suggest

order-preserving regression smoothers with relatively low bias, particularly at the extremities

of the design interval, and describe their properties.

1.2. Existing order-preserving methods. Quotient methods for nonparametric regression, for

example the Nadaraya-Watson estimator, are order-preserving, if based on non-negative kernel

weights. This follows from the fact that such techniques (a) are linear in the response variables

Yi, and (b) have the positivity property, i.e., whenever the response variables are all nonnegative,

the estimator itself is nonnegative. More generally, a linear estimator is order-preserving if and

only if it has the positivity property.

Several recent examples of quotient methods are based on the Nadaraya-Watson estimator.

They include identity-reproducing regression or mass-centered smoothing techniques, discussed

by Müller and Song (1993) and Mammen and Marron (1997); the biased bootstrap form of

the Nadaraya-Watson estimator (Hall and Presnell, 1988); and some, although not all, data-

sharpening techniques (Choi, Hall and Rousson, 1999). However, all these methods suffer

excessive bias at boundaries. Specifically, while they have O(h2) bias in the interior, where h

denotes bandwidth, this rate deteriorates to O(h) near a boundary.

Convolution-type estimators, such as those of Gasser-Müller and Priestley-Chao type (see,

e.g., Wand and Jones, 1995, p. 130ff; Simonoff, 1996, p. 138), are also order-preserving, as long

as positive kernel weights are used, since they are linear and have the positivity property. For

both convolution-type and quotient-type estimators, the positivity property holds if the kernels

used are non-negative. On the other hand, local-linear methods, which are well known for their

high level of resistance to boundary effects (see e.g. Fan, 1992, and Fan and Gijbels, 1992),

lack the positivity property and are not order preserving, even while employing a non-negative
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kernel or weight function. Moreover, they suffer this deficiency even in the asymptotic limit —

in an important class of problems the probability that a local-linear estimator, computed for

a particular realization, is not order preserving at the boundary, converges to 1 as sample size

increases; see section 3.1.

In fact, no linear, kernel-type estimator which enjoys the positivity property can have better

than O(h) bias at the boundary, where h denotes the estimator’s bandwidth; see section 3.1.

Equivalently, no order-preserving kernel-type estimator with better than O(h) boundary bias

can be linear. Therefore, nonlinear estimators must be used if we are to obtain an order-

preserving estimator with O(h2) bias across the full design interval. In particular, none of the

estimators discussed above is suitable. This also includes traditional methods for alleviating

edge effect problems based on boundary kernels, as it can be easily shown that suitable bound-

ary kernel functions cannot be restricted to be non-negative.

1.3 The relevance of conditional distribution function estimation at boundaries. As mentioned

above, a major motivation for order-preserving regression is the desire to obtain bona fide

distribution function estimates (see, for example, Hall et al., 1999, and Peracchi, 2002, for

some recent work on this problem). Such estimates are important for a variety of purposes,

of which one is estimation of conditional density functions which are implicitly derived via

conditional distribution functions. Another application is the nonparametric estimation of

conditional quantile functions as inverses of conditional distribution functions, a problem that

has been studied by Bhattacharya and Gangopadhyay (1990) and Yu and Jones (1998), among

others. There is particular motivation for estimating bona fide conditional distribution functions

exactly at those covariate levels where the problem is hardest, namely at or near endpoints and

change-points defined in terms of the covariate level.

2. Methodology

While it is clear from discussion in section 1 that order-preserving methods with good

boundary-bias properties are necessarily nonlinear, the linearity of techniques such as those of

Nadaraya and Watson, Gasser and Müller, and Priestley and Chao is partly responsible for their

order-preserving property. Therefore, we seek a method which combines the best of both worlds,

i.e., which corrects for boundary bias without losing the important features of linearity. This

leads us to suggest that nonlinear methods be used to impute ordered ‘pseudo-data’ on the sides
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of boundaries away from the real data set, and that then relatively conventional linear methods

be applied to the new, larger data set, to produce an estimator which is order-preserving.

Data imputation by reflection in the boundaries, much as discussed by Schuster (1985),

Silverman (1986, p. 30f) and Cline and Hart (1991) in the context of density estimation, leads

directly to an order-preserving estimator. It enjoys only O(h) bias at the boundaries, however.

Hall and Wehrly (1991) suggested an alternative data imputation method which involves reflec-

tion in points on the boundaries, but while it has good boundary bias properties it fails to be

order-preserving. We propose an order-preserving version of the Hall-Wehrly technique, which

attains the desirable O(h2) boundary bias rate, as follows.

Assume we have an ordered sequence of data sets Xt, as suggested in section 1.1; in par-

ticular, Ysi ≤ Yti whenever s ≤ t. Suppose the distribution of the explanatory variables Xi

is supported on an interval I = [a, b], which we call the design interval. Let ĝLL,t, for t ∈ T ,

denote a local linear estimator of gt computed from data in Xt. It is defined by minimizing the

weighted sum of squares

n∑
i=1

K

(
x−Xi

h

)
[Yti − {β0 + β1(x−Xi)}]2

with respect to β0, β1 and setting ĝLL,t = β̂0. Here K is a kernel function and h the sequence of

bandwidths.

For x = a or x = b consider the sequence U(x) = {ĝLL,t(x) : t ∈ T }. Ideally the elements of

each U(x) would be monotone increasing in t, but this is unlikely to be the case for the endpoints

x = a, b. We wish to ‘monotonize’ ĝLL,t(x) at just those places. There are several ways of

achieving this end; we consider one particular method below, where we denote the monotonized

version of ĝLL,t(x) (monotone in the sense of a function of t, for fixed x) by g̃t(x). In effect it

fills in the valleys of ĝLL,t(x) by horizontal lines. For the special case of estimating a conditional

distribution function, this is indicated in Figure 1 for an example data set. The initial non-

monotone (in t) estimate F̂LL(·, x) of the conditional distribution function is monotonized to

produce the version F̂ (·|x).
For simplicity we assume that T is closed and bounded, although our methods lead to a

more general definition of g̃t. The prescription given below is descriptive, but can readily be

given in mathematically rigorous terms. Let V(x) be the set of points t which are such that

ĝLL,u(x) ≤ ĝLL,t(x) for all u ≤ t, and also such that, on passing to a point in T immediately

to the right of t, ĝLL,t(x) turns strictly downwards, rather than taking a nondecreasing path.
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In practical applications V(x) would be finite, so we write it in strictly increasing order as

V(x) = {s1, . . . , sN}. For each s ∈ V , let u(s) be the point t ∈ T at which ĝLL,t(x) first recovers

the same level as, or a greater level than, ĝLL,s(x). Put ti = u(si) and define g̃t(x) = ĝLL,si
(x)

if si ≤ t < ti for some i, and g̃t(x) = ĝLL,t(x) otherwise. (Definitions near the boundary are

handled in the obvious way; see Figure 1.) Then g̃t(x) is nondecreasing in t ∈ T .

For each t ∈ T , we then compute pseudo-data by projecting the points in Xt through both

g̃t(a) and g̃t(b); see Figure 2 for the distribution function case. This produces a new data set

X ′
t = {(X ′

i, Y
′
ti) : 1 ≤ i ≤ 3n}, say, where without loss of generality, X1 ≤ . . . ≤ X3n. Thus,

the middle n pairs (X ′
i, Y

′
ti) are the original data, the first n are pseudo-data on the left-hand

side of the lower boundary, and the last n are pseudo-data on the right-hand side of the upper

boundary.

We compute ĝt by fitting a kernel-type linear estimator through X ′
t , assuming that the

estimator has the form

ĝt(x) =
3n∑
i=1

wi(x)Y
′
ti , (2.1)

where, for a constant C > 0, the weights satisfy:

for 1 ≤ i ≤ 3n , wi(·) ≥ 0 and wi(x) = 0 whenever |x−X ′
i| > Ch ; (2.2)

for 1 ≤ i ≤ n and 0 ≤ x ≤ Ch , wn−i+1(a+ x) ≤ wn+i(a+ x)

and w2n−i+1(b− x) ≤ w2n+i(b− x) . (2.3)

Condition (2.2) is of course satisfied by kernel-type estimators based on nonnegative kernels

supported in the interval [−C,C]. Condition (2.3) is also typically satisfied. To appreciate why,

observe that by definition of our reflection method, the set of design points of the pseudo-data

generated on the left-hand side of a (respectively, on the right-hand side of b ) is the reflection

in x = a (respectively, in x = b ) of the set of design points of the real data. When ĝt is a

Nadaraya-Watson estimator, the choice we make in the illustrating examples, the weight wi(x)

equals the ratio of a single kernel weight Ki(x) = K{(x − Xi)/h} to the sum
∑

j Kj(x). If

K is symmetric, unimodal and supported on [−C,C] then, provided h ≤ (b − a)/(2C), this

construction implies that at a+x, with 0 ≤ x ≤ Ch, the denominators of wn−i+1(·) and wn+i(·)
are identical, but (by virtue of the unimodality) the numerator of the latter is not less than

that of the former. This property, and its counterpart for the other boundary, imply (2.3).
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This last smoothing step, when implemented with a Nadaraya-Watson quotient type kernel

estimator, is illustrated for the conditional distribution function case in Figure 3 for an example

data set. The resulting distribution function estimator is denoted by F̂ (·|x).
The following result, proved in section 3, demonstrates that ĝt has the required properties.

Theorem 2.1. If ĝt is defined by (2.1), if the weights satisfy (2.2) and (2.3), and if 0 < h ≤
1
2
(b− a), then ĝt is order preserving on I.

3. Theoretical Properties

3.1. Problems suffered by linear estimators. Let ĝ(x) =
∑

i wi(x)Yi be a linear estimator

of g(x) = E(Y |X = x), computed from the independent and identically distributed data

X = {(Xi, Yi) : 1 ≤ i ≤ n}. We shall say that ĝ is of kernel type with bandwidth h if the wi’s

are functionals of X1, . . . , Xn satisfying, for constants C1, C2, C3 > 0, for all x in the design

interval, and for all sufficiently large n,

wi(x) = 0 whenever |x−Xi| > C1h , and
∑

i:|x−Xi|>C2h

wi(x) ≥ C3 . (3.1)

Conventional kernel estimators, such as those of Nadaraya-Watson, Gasser-Müller or Priest-

ley-Chao type, satisfy this condition with probability 1 when the kernel is nonnegative and

compactly supported, when the design density is bounded away from 0 on the design interval,

and when the bandwidth satisfies the mild conditions h = h(n) → 0 and nh/(log n)1/2 →∞.

Assume the design interval is [a, b]. Our first result shows, in effect, that no kernel-type

linear estimator with the positivity property can have better than O(h) bias at the boundary.

Since a linear estimator is order preserving if and only if it has the positivity property, then

linear, order-preserving estimators fail to have good bias properties.

Theorem 3.1. If ĝ is a kernel-type linear estimator with the positivity property, and if in the

case where g(x) ≡ C (a constant) we have

E{ĝ(a)|X1, . . . , Xn} = C + op(h) (3.2)

as h → 0, then whenever g has a continuous derivative on [a, b] and g′(a) 6= 0, there exists

ε > 0 such that the probability that∣∣E{ĝ(a)|X1, . . . , Xn} − g(a)
∣∣ > εh
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converges to 1 as n→∞.

In general, local linear estimators fail to have the positivity property, although it might be

thought that this is only a rare defect — for large samples, local linear estimators of regression

means might be expected to be order-preserving except in unusual cases. Unfortunately this is

not true. Below we shall show that with probability tending to 1, local linear methods fail to

be order preserving in the important case of distribution function estimation. This is only one

member of a large class of examples for which local linear methods fail to be order-preserving.

The problems arise because of the way local linear methods deal with edge effects. On

the other hand, if the design density is supported on a compact interval I and bounded away

from 0 there, then with probability tending to 1 as n → ∞, local linear estimators have the

positivity property when applied to data pairs whose design component is confined to a compact

subinterval of I which does not include the endpoints of I. Therefore, local linear estimators

seldom fail to be order preserving in the interior of I. We compile some assumptions as follows.

C0 Let (Xi, Zi), for 1 ≤ i ≤ n, be a sequence of independent and identically distributed random

2-vectors, with the marginal distribution of X being supported on an interval I = [a, b],

and the marginal density continuous and non-vanishing there. Construct an estimator

F̂LL(t|x) of F (t|x) = P (Z ≤ t|X = x) by passing a local linear smoother through the pairs

(Xi, Yti), where Yti = I(Zi ≤ t), using a bounded, compactly supported, symmetric, piece-

wise continuous, nonnegative kernel K and a bandwidth h. Assume that h = h(n) → 0

and nh → ∞ as n → ∞, which are minimum conditions for weak consistency. We also

ask that for x = a and b, F (·|x) be nonsingular.

Theorem 3.2. Under conditions (C0), and with probability tending to 1 as n→∞, there exist

intervals [a, x̂1] and [x̂2, b], with x̂1, x̂2 stochastic and a < x̂1 < x̂2 < b, such that whenever x is

an element of either interval, F̂LL(·|x) is not monotone nondecreasing.

It may be proved, under slightly more restrictive conditions, that the lengths of the intervals

[a, x̂1] and [x̂2, b] are both Op(h), and that they may be chosen so that with probability tending

to 1 their lengths exceed εh, provided ε > 0 is taken sufficiently small (but fixed). Furthermore,

the problems evinced by Theorem 3.2 are not overcome by modifying local linear estimators

in conventional ways. For example, incorporating a ridge parameter does not alleviate the
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difficulties, since it alters only the denominators of the smoothing weights used to construct

local linear estimators; the non-positivity of local linear methods, which is the root cause of

the problems, is caused by the numerators of the smoothing weights.

3.2. Properties of the order-preserving estimator ĝt. For the sake of definiteness we shall

take ĝt, defined in section 2 and computed from the data and pseudo-data, to be a standard

Nadaraya-Watson estimator, although our results apply to other estimator types as well. The

Nadaraya-Watson kernel estimator for gt(x), obtained from the pseudo-data (X ′
i, Y

′
ti), is

ĝt(x) =
3n∑
i=1

K

(
x−X ′

i

h

)
Y ′
ti/

3n∑
i=1

K

(
x−X ′

i

h

)
.

With the aim of obtaining useful upper bounds, we compile the following assumptions:

C1 For each t the 2-vectors (Xi, Yti), for 1 ≤ i < ∞, are independent and identically dis-

tributed; the common distribution of the independent random variables Xi is continuous

on a compact interval I, has a density which is bounded away from 0 and has two bounded

derivatives there, and vanishes off I; for some ε > 0,

sup
t∈T , |u|≤ε

E
(

exp
[
u{Yti − E(Yti|Xi)}

])
<∞ ; (3.3)

the regression-mean functions gt(x) = E(Yti|Xi = x), for t ∈ T , and their first two

derivatives, are bounded uniformly with respect to both x ∈ I and t ∈ T ; the bandwidths

h1 used to construct the local linear estimator ĝLL,t from the data set Xt, and h2 used

to construct the Nadaraya-Watson estimator ĝt from X ′
t , both satisfy nεhj → 0 and

n1−εhj →∞ as n→∞ for some ε > 0; the kernels used for either estimator are symmetric,

compactly supported, nonnegative, and Hölder continuous on the real line; the kernel

used for ĝt is unimodal; and the number of elements of T = T (n) increases no more than

polynomially fast in n.

Theorem 3.3. Assume conditions (C1). Then with probability 1,

sup
t∈T

sup
x∈X

|ĝt(x)− gt(x)| = O
{
(nh)−1/2(log n)1/2 + h2

}
. (3.4)
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The rate of convergence asserted at (3.4) is the best possible for even a single t, and for

distributions satisfying (C1). In fact, it may be proved that in the case of a single regression,

and under additional regularity conditions,

sup
x∈X

∣∣ĝt(x)− E{ĝt(x)|X1, . . . , Xn}
∣∣ = C {1 + o(1)} (nh)−1/2 (log n)1/2

with probability 1, where C > 0 is a constant; and E{ĝt(x)|X1, . . . , Xn} = h2 γt(x) + o(h2)

with probability 1, where γt is a non-vanishing function. Therefore, the convergence rate at

(3.4) is also best possible when it is asserted uniformly in t. We note that the final assumption

in condition (C1), about the rate at which the number of elements (size) of T (n) increases,

is usually adequate even when T is infinite, and also that there is no difficulty extending our

methods and results to the fixed design case where X1, . . . , Xn are non-stochastic and spaced

according to a smooth positive design density.

3.3. Application to Distribution Function Estimation. Depending on the model that generates

the ordered data sets Xt, alternative methods can be used to derive rates of convergence of ĝt

to gt in integral metrics, not requiring the logarithmic factor on the right-hand side of (3.4).

For instance, this is the case for the distribution function estimation problem.

In that context we observe independent and identically distributed data pairs (X1, Z1), . . . ,

(Xn, Zn); we put Yti = I(Zi ≤ t) and F (t|x) = P (Z ≤ t|X = x), and we take F̂ (t|x) to be the

estimator obtained by applying our order-preserving smoother to the data sets Xt = {(Xi, Yti) :

1 ≤ i ≤ n}, for t ∈ (−∞,∞). Consider the following assumptions.

C2 The distribution of (X,Z) is compactly supported; the distribution of X is continuous on

a compact interval I, has a density which is bounded away from 0 and has two bounded

derivatives there, and vanishes off I; the functions (∂/∂t)j F (t|x), for j = 0, 1, 2, are

bounded uniformly with respect to both x ∈ I and t ∈ T ; the bandwidths h1 used to

construct the local linear estimator ĝLL,t from the data set Xt, and h2 used to construct

the Nadaraya-Watson estimator ĝt from X ′
t , both satisfy nεhj → 0 and n1−εhj → ∞ as

n → ∞ for some ε > 0; the kernels used for either estimator are symmetric, compactly

supported, nonnegative, and Hölder continuous on the real line; and the kernel used for

ĝt is unimodal.

Theorem 3.4. Assume conditions (C2). Then, with probability 1,∫ ∫ {
F̂ (t|x)− F (t|x)

}2
dt dx = O

{
(nh)−1 + h4

}
.
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Theorem 3.4 implies a uniform convergence rate for estimators of linear functionals of F (t|·).
For example, given a constant B > 0, let C(B) denote the class of differentiable functions ψ sat-

isfying supt |ψ′(t)| ≤ B, and define Ψ(x|ψ) = E{ψ(Z)|X = x}. Put Ψ̂(x|ψ) =
∫
ψ(t) dtF̂ (t|x).

Applying Theorem 3.4 through an integration by parts and an application of Hölder’s inequality,

we obtain that with probability 1,

sup
ψ∈C(B)

∫ {
Ψ̂(x|ψ)−Ψ(x|ψ)

}2
dx = O

{
(nh)−1 + h4

}
.

Another case of interest concerns the estimation of conditional quantiles. Assume that

for 0 ≤ q < r ≤ 1 the inverse F−1(p|x) of F (·|x) exists for p ∈ [q, r], furthermore that

infp∈[q,r] infx∈X F ′(F−1(p))|x) > 0. Then, choosing for example as estimates of conditional

quantiles

F̂−1(p|x) =
1

2

[
inf
t∈T
{t : F̂ (t|x) ≥ p} + sup

t∈T
{t : F̂ (t|x) < p}

]
,

the result (3.4), applied to conditional distribution functions and combined with bounds for the

difference of inverses of two functions, leads to: with probability 1,

sup
p∈[q,r]

sup
x∈X

|F̂−1(p|x) − F−1(p|x)| = O
{
(nh)−1/2(log n)1/2 + h2

}
.

4. Illustrations of order-preserving nonparametric regression

We demonstrate here some simulation and application based examples that focus on the case

of conditional distribution estimation. Applying the three-step order-preserving nonparametric

regression procedure described in section 2, to data (Xi, Yti) = (Xi, I(Zi ≤ t)), for i = 1, . . . , n,

we first obtain the augmented pseudo-data, (X ′
i, Y

′
ti), for i = 1, . . . , 3n, and then the bona fide

conditional distribution function estimator

F̂ (t|x) =

∑3n
i=1 K

(
x−X′

i

h

)
Y ′
ti∑3n

i=1 K
(
x−X′

i

h

) . (4.1)

In the following, we choose the kernel function K to be the Bartlett-Parzen-Epanechnikov

kernel with support [−1, 1], K(u) = 3
4
(1− u2)I(−1 ≤ u ≤ 1). The transition from the initial
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non-monotone conditional distribution function estimator F̂LL(·|b) to the monotonized version

F̃ (t|b) is illustrated in Figure 1. Generation of the pseudo-data and the final estimate (4.1) is

depicted in Figures 2 and 3. If one desires an estimate of the conditional distribution function

that is smooth in t, one could use (4.1) as a starting point and then integrate the conditional

density kernel estimator f̂(t|x) =
∫
h̃−1K̃(h̃−1(t − u)) dF̂ (u|x) (constructed with kernel K̃

and bandwidth h̃) to obtain the smooth estimate F̃ (t|x) =
∫ t

−∞ f̂(v|x) dv. The preceding for-

mula demonstrates that nonparametric estimation of a conditional density requires a bona fide

non-negative conditional empirical measure, which is only guaranteed if an order-preserving

procedure is used.

4.1. Application to Change-Point Estimation and Conditional Distribution Estimation Near

Change-Points. We illustrate the use of conditional distribution and quantile function estima-

tion near and at endpoints, through an application to the estimation of change-point locations

and of conditional distribution and quantile functions near change-points. We consider here a

small number of isolated change-point locations θ, at which the map from the domain of the

covariate [a, b] to the space of distribution functions, x 7→ F (·|x), has a discontinuity, whereas

at all other covariate values x it is continuous. Continuity is defined with respect to a suitable

metric in the space of distribution functions (Carlstein, 1988).

Consider a covariate level x0 in the interior of [a, b], and denote the conditional distribu-

tions (pertaining to the L2-metric) to the left and right of x0 as F−(·|x0) = limx↑x0 F (·|x) and

F+(·|x0) = limx↓x0 F (·|x), respectively. WithD(F−(·|x0), F+(·|x0)) =
∫
{F+(t|x0)−F−(t|x0)}2 dt,

one has D(F−(·|x0), F+(·|x0)) = 0 if the mapping x 7→ F (·|x) is continuous at x = x0, and

D(F−(·|x0), F+(·|x0)) > 0 if a jump occurs at x0.

We may estimate F±(·|x0) using the order-preserving estimators F̂±(·|x0), by using only the

data falling into [a, x0] when computing F̂−(·|x0), with reflection occurring at the endpoints a

and x0; and analogously for F̂+(·|x0). In both cases, x0 plays the role of an endpoint.

Using the change-point detection function ∆(θ) =
∫ {

F̂+(t|θ)−F̂−(t|θ)
}2
dt, the correspond-

ing change-point location estimate is θ̂ = arg supθ ∆(θ). If more than one change-point is to be

estimated, this process is simply repeated, by removing the previously estimated locations plus

appropriate neighborhoods around them from the set of potential change-point locations over

which a maximum of ∆(·) is sought.

Once the estimated change-point location θ̂ has been determined, we set x0 = θ̂ and obtain

order-preserving distribution function estimates using only data where the covariate values fall
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into the intervals [a, θ̂] on the left of the estimated change-point, or into the intervals [θ̂, b]

on the right of the estimated change-point, following exactly the same procedures as for an

assumed change-point at x0.

4.2. Simulated Example for Change in Variance. We illustrate these procedures first with a

simulated data set. Here

Zi = g(Xi) + ei, i = 1, . . . , n, Xi ∼ U(0, 1), ei ∼ N(0, σ2),

and the e′is and X ′
is are totally independent. Choosing n = 1000, we assume that a change

in the variance occurs at x = 0.7, with g(x) = ex and var(e|x) = σ2 = 0.2, x < 0.7, while

var(e|x) = σ2 = 1, x > 0.7. The bandwidth was chosen as h = 0.2.

We obtain the change-point detection function ∆(·) as shown in Figure 4. A single change-

point location emerges as the maximizing argument, and the conditional distribution function

estimates adapted to this estimated change-point location are indicated by the 0.1, 0.5 and

0.9 estimated quantiles in Figure 5. The change in variance is very clearly reflected in these

estimates. Figure 6 allows comparison of the two conditional distribution function estimates

F̂−(·|θ̂) and F̂+(·|θ̂) right at the endpoint θ̂, with the corresponding normal underlying dis-

tribution functions F−(·|θ) and F+(·|θ). Agreement is seen to be quite good, confirming that

order-preserving estimation of conditional distribution functions performs well at both change-

points and endpoints.

Note that the characteristic of the distribution function that is subject to a sudden change

is unknown, i.e., it is not assumed to be known in this example that it is a jump in the variance.

Commonly used change-point detection methods based on differences between regular one-sided

local linear fits are focusing on mean changes and will not detect this change, since the mean

continues to change smoothly across the point of discontinuity in the variance. One-sided bona

fide distribution function estimates at endpoints then allow to define a general detection func-

tion ∆ based on a suitable distance measure between left- and right-sided distribution function

estimates.

4.3. Application to Change-Points in DNA Sequences. The analysis of the frequencies of base-

pairs in DNA sequences has been studied by many authors; see for example Braun and Müller

(1999), Braun et al. (2000), Chechetkin and Lobzin (1998) and Liö et al. (1996) for bio-

logical relevance, methodology and further references. We use the sequence of Saccharomyces
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Cerevisiae III, a chromosome of brewer’s yeast, to illustrate order-preserving conditional dis-

tribution function estimation in the presence of change-points.

The data consist of n = 526 relative frequencies (obtained by binning) of the occurrence

of Guanine and Cytosine (G+C) as a proportion of all bases (A,C,G and T). These data are

available from Genbank (http://www.ncbi.nlm.nih.gov/Genbank/). We assume two change-

points, based on previous analyses of these data. One could extend existing inference procedures

as in Dümbegn (1991) or Braun et al. (2000) for the existence and number of change-points

to the more complex situation in this application. Our analysis proceeds by first locating the

change-points with the methods described above and then constructing the order-preserving

conditional distribution function estimates, adapted to the two estimated change-points as

shown via the quantile estimates in Figure 7. Interesting mean and variance patterns become

visible that may motivate further, detailed analyses.

5. Theoretical arguments

5.1. Proof of Theorem 2.1. Recall that X ′
t = {(X ′

i, Y
′
ti) : 1 ≤ i ≤ 3n}, where X1 ≤ . . . ≤ X3n.

We must establish that if s ≤ t then, for x ∈ I and h ≤ 1
2
(b− a),

ĝt(x)− ĝs(x) =
3n∑
i=1

wi(x) (Y ′
ti − Y ′

si) ≥ 0 . (5.1)

If n+1 ≤ i ≤ 2n then (X ′
i, Y

′
ti) is one of the original data, and so by assumption (see section 2),

Y ′
ti−Y ′

si ≥ 0, implying that the corresponding contribution to the series in (5.1) is nonnegative.

If 1 ≤ i ≤ n then either Y ′
ti− Y ′

si ≥ 0, in which case the contribution to (5.1) is nonnegative, or

Y ′
ti−Y ′

si < 0. In the latter case, the manner of generation of the pseudo-data implies that there

exists an index j, between n+1 and 2n, such that X ′
j is the same distance to the right of x = a

as X ′
i is to the left. Since g̃u(a) is nondecreasing as a function of u then |Y ′

ti−Y ′
si| ≤ Y ′

tj−Y ′
sj. In

view of (2.3), wi(x) ≤ wj(x), and so the net contribution of the ith and jth terms to the series

in (5.1) is nonnegative. The case 2n + 1 ≤ i ≤ 3n may be treated similarly. The assumption

that h ≤ 1
2
(b−a) implies that no real data pair needs to be combined in this manner with more

than one pseudo-data pair. Hence, for each negative summand in the series in (5.1) there is a

positive summand which is not less than the absolute value of the negative summand; and no

positive summand has to be combined with two or more negative summands in this way. This

establishes the inequality at (5.1).
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5.2. Proof of Theorem 3.1. Property (3.2) implies that
∑

i wi(a) = 1 + op(h). Recall that

positivity means ĝ(x) ≥ 0 whenever each Yi ≥ 0, and so implies that each wi(x) ≥ 0. From

these results, Taylor expansion, and both parts of (3.1), we may prove that, when g′(a) ≥ 0,

E{ĝ(a)|X1, . . . , Xn} =
n∑
i=1

wi(a) g(Xi) =
n∑
i=1

wi(a) {g(a) + (Xi − a) g′(a)}+ op(h)

= g(a) + g′(a)
n∑
i=1

wi(a) (Xi − a) + op(h)

≥ g(a) + g′(a)
∑

i:|Xi−a|≥C2h

wi(a) (Xi − a) + op(h)

≥ g(a) + C2C3h g
′(a) + op(h)

which implies the theorem. The case g′(a) < 0 may be treated similarly.

5.3. Proof of Theorem 3.2. Without loss of generality the design interval is [0, b]. We shall

prove that with probability tending to 1, there exist s < t such that F̂ (t|0)− F̂ (s|0) < 0. This

result, the continuity of F̂ (t|x) as a function of x, and the symmetry of behavior at either end

of [0, b], imply Theorem 3.2.

Note first that it is possible to choose ξ > 0 such that K(ξ) > 0 and

A(ξ) ≡
∫ ∞

0

y2K(y) dy − ξ

∫ ∞

0

y K(y) dy < 0 .

Let δ > 0 be so small that K ≥ C > 0 on the interval [ξ, ξ + δ]. Since nh → ∞ then with

probability tending to 1 as n → ∞, there is at least one Xi ∈ [ξh, (ξ + δ)h]. Since F (·|0) is

nonsingular then for this i we may choose s < t such that Zi ∈ (s, t) and no other Zj lies there.

(We suppress the dependence of s and t on i.) Then,

F̂ (t|0)− F̂ (s|0) =
S2 − (Xi/h)S1

S2 S0 − S2
1

K
(Xi

h

)
,

where Sk = (nh)−1
∑

i (Xi/h)
kK(Xi/h). Now, S2 − (Xi/h)S1 = A(Xi/h) f(0) + op(1), and as

n→∞, S2 S0 − S2
1 converges in probability to

f(0)2

[
1
2

∫ ∞

0

y2K(y) dy −
{ ∫ ∞

0

y K(y) dy

}2 ]
> 0 ,

where f denotes the marginal density of X. Hence, in view of our choice of Xi, the probability

that F̂ (t|0)− F̂ (s|0) < 0 converges to 1 as n→∞, as had to be shown.
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5.4. Outline proof of Theorem 3.3. Define µLL,t(x) = E{ĝLL,t(x)|X1, . . . , Xn}. Using methods

based on moderate deviations of sums of independent random variables, and in particular

employing the assumption (3.3) of finite moment generating function, we may show that there

exist C1, C2 > 0 such that, for all sufficiently large C3 > 0,

sup
t∈T

max
x=a,b

P
{∣∣ĝLL,t(x)− µLL,t(x)

∣∣ > C3 (nh)−1/2 (log n)1/2
}

= O
(
n−C1C3

)
,

sup
t∈T

max
x=a,b

P
{
|µLL,t(x)− gt(x)| > C2 h

2
}

= O
(
n−C3

)
. (5.2)

From these results, the fact that T has only O(nC4) elements for some C4 > 0, and the

Borel-Cantelli lemma, we may prove that with probability 1,

sup
t∈T

max
x=a,b

∣∣ĝLL,t(x)− gt(x)
∣∣ = O

{
(nh)−1/2 (log n)1/2 + h2

}
.

The latter property and the definition of g̃t imply that, with

ξt(x) = g̃t(x) and η = (nh)−1/2 (log n)1/2 + h2 , (5.3)

we have with probability 1,

sup
t∈T

max
x=a,b

∣∣ξt(x)− gt(x)
∣∣ = O(η) . (5.4)

Assume the kernel used to construct the Nadaraya-Watson estimator ĝt is supported on

[−C,C]. Then, ĝt restricted to [a+Ch, b−Ch] does not involve any of the pseudo-data. Define

µt(x) = E{ĝt(x)|X1, . . . , Xn}. Using the arguments leading to (5.2) we may prove that for

constants C1, C2 > 0 we have for all sufficiently large C3 > 0,

sup
t∈T

sup
a+Ch≤x≤b−Ch

P
{∣∣ĝt(x)− µt(x)

∣∣ > C3 (nh)−1/2 (log n)1/2
}

= O
(
n−C1C3

)
,

sup
t∈T

max
x=a,b

P
{
|µt(x)− gt(x)| > C2 h

2
}

= O
(
n−C3

)
.

From this result, the fact that the kernel used to construct ĝt is Hölder continuous, the

property that T has only polynomially many elements, and the Borel-Cantelli lemma, we may

show that with probability 1,

sup
t∈T

max
a+Ch≤x≤b−Ch

∣∣ĝt(x)− gt(x)
∣∣ = O(η) . (5.5)
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Now consider a generalized form of the estimator ĝt(x) in which, rather than generating

pseudo-data by reflecting the real data through points (a, g̃t(a)) and (b, g̃t(b)), we reflect through

(a, ξt(a)) and (b, ξt(b)), where ξt(x) is nondecreasing in t for x = a, b. Let ĝξt,t denote the

resulting version of ĝt. Using the linearity of Nadaraya-Watson estimators we may, for |x−a| ≤
Ch, write ĝξt,t(x) = ĝgt,t(x) + {ξt(a) − gt(a)} ζt(x) , where the function ζt does not depend on

choice of ξt. Arguments leading to (5.5) may be employed to prove that with probability 1,

sup
t∈T

sup
|x−a|≤Ch

∣∣ĝgt,t(x)− gt(x)
∣∣ = O(η) , sup

t∈T
sup

|x−a|≤Ch
|ζt(x)| = O(1) .

Making the choice of ξt at (5.3), and noting that (5.4) holds for this selection, we deduce that

sup
t∈T

max
|x−a|≤Ch

∣∣ĝt(x)− gt(x)
∣∣ = O(η) . (5.6)

A similar property holds at the other boundary. Combining that result with (5.5) and (5.6),

we deduce Theorem 3.3.

Derivation of Theorem 3.4 may similarly be based on application of the Borel-Cantelli

lemma, this time using Markov’s inequality and moment bounds, as well as techniques from

the proof of Theorem 3.3, to prove that for some C1 > 0 and all C2 > 0,

P

[ ∫ ∫ {
F̂ (t|x)− F (t|x)

}2
dt dx > C1

{
(nh)−1 + h4

}]
= O

(
n−C2

)
.

6. Concluding remarks

The proposed order-preserving nonparametric regression algorithm provides a first solution

to a problem that was previously not tractable, namely to ensure that nonparametric regression

function estimators respect order relationships within the responses, in the interior of the range

of the covariate as well as near or at endpoints of the range. We illustrate the importance of

the problem and the efficacy of the proposed solution in the case of conditional distribution

function estimation. Order-preserving estimation is here a prerequisite for defining bona fide

conditional distribution function estimates.

The problem of crossing quantile estimators has been noted and addressed before in linear

regression models (He, 1997). A comprehensive solution as that given here has not previously

been provided. Further relevant applications include the construction of prediction intervals

for new observations that are made near endpoints as well as the change-point problem.
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We have shown that no linear method, and this includes practically all commonly used

nonparametric regression methods, has the property of being order-preserving on the whole

domain of the predictor variable. The proposed nonlinear procedure works well and has been

shown to possess attractive asymptotic properties. Topics of interest for future research are the

development of other order-preserving nonparametric regression methods and an investigation

of asymptotic distributions.
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LIÖ, P., POLITI, A., RUFFO, S. AND BUIATTI, M. (1996). Analysis of genomic patchiness

of haemophilus influenzae and Saccharomyces Chromosomes. J. Theor. Biol. 183, 455–469.

MAMMEN, E. AND MARRON, J.S. (1997). Mass centred kernel smoothers. Biometrika 84,

765–777.
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Figure 1: Filling in the “valleys” of the initial distribution function estimate F̂LL(·|b) obtained

by local linear fitting at a right endpoint b (solid line) results in a monotone increasing estimate

F̃ (t|b) (thin line), as t increases (Simulated example with n = 100 data.)
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Figure 2: Generation of pseudo-data X ′
t by reflecting original data Xt (confined to domain

[a, b] = [0, 1]) at the points (0, F̃ (t|0)) and (1, F̃ (t|1)). The data (Xi, Yti) illustrated here were

simulated, using sample size n = 20 and a single value for t. The response variables are indicators

Yti = I(Zi ≤ t), as used for the application to estimating a conditional distribution function.
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Figure 3: Comparison of monotonized intermediate conditional distribution function estimate

F̃ (·, x) (solid) and the final estimate F̂ (·, x) (dashed), constructed from the pseudo-data X ′
t

obtained in the reflection step. Here for simulated data with n = 100, h = 0.2 when estimating

at the point x = .95 near the right endpoint at b = 1.
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Figure 4: The change-point detection function ∆(·) for simulated variance change data (n =

1000, h = 0.2, fixed design case). The peak selected for the change-point estimate is highlighted.
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Figure 5: The estimated conditional quantile functions for the variance change data (h =

0.2, n = 1000). Indicated are the 0.1, 0.5 and 0.9 estimated (solid) and true (dashed) quantile

curves. Estimated curves are adapted to the estimated change-point location.
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Figure 6: The estimated conditional distribution functions F̂−(t|θ̂) (steep dashed function) and

F̂+(t|θ̂) (less steep dashed function), and the true Gaussian conditional distribution functions

F−(t|θ) (steep solid function) and F+(t|θ) (less steep solid function). The distribution function

estimates use only data on left or right side of the estimated change-point.
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Figure 7: The estimated order-preserving conditional quantile functions (h = 50kbp) for the

S. cerevisiae III DNA sequence, indicated by estimated 0.25, 0.5 and 0.75 quantile curves, and

adapted to the two estimated change-point locations.
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