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Abstract

We explore a nonparametric version of response surface analysis. Estimates for the location

where maximum response occurs are proposed and their asymptotic distribution is investigated.

The proposed estimates are based on kernel and local least squares methods. We construct asymp-

totic confidence regions for the location. The methods are illustrated for the two-dimensional case

with AIDS incidence data.
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1. Introduction

Estimating the location and size of extrema of a nonparametric regression function often is

a motivating factor in fitting such a curve. For the one-dimensional case, peak estimation in a

smooth regression function has been explored in Müller (1985, 1989). Extensions to the multivariate

situation for the fixed design case, which includes bioassay data, are of general interest. A classic

example would be finding the amounts of two or more nutrients that optimize a growth response

(Clifford et al., 1993, Müller et al., 1996). Such knowledge optimizes health benefits and maximizes

cost-effectiveness. This basic premise motivated many developments within the field of response

surface methodology, or RSM (Myers et al., 1989).

RSM is currently a popular method, particularly in industry, to establish conditions that provide

maximal yields. Second order parametric models are the norm to find conditions that maximize
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product yield or quality in disciplines such as chemical engineering (Axelsson et al., 1995), bio-

logical/biochemical processes (Roberto et al., 1995; Dey et al., 2001), food science (Kitagawa et

al., 1994), engineering (Shyy et al., 2001), air quality (Vogt et al., 1989), or toxicology (Carter

et al., 1985). For the special problem of finding the most (cost) effective dose of a drug or drug

combination, either in terms of least amount to be effective or tolerance threshold, a univariate

nonparametric approach can be found in Rice and Kelly (1990). This compliments parametric

approaches by Cox (1987) and Gennings et al. (1990). The field of dose-response modeling with

RSM has been substantially developed, particularly with respect to (drug) interactions (see e.g.,

Hung, 1992, Greco et al., 1994, or Hirst et al., 1996).

The current use of RSM to find conditions that maximize the response has some limitations,

which are particularly relevant for the biological sciences. First, the data are assumed to follow

a normal distribution, although generalized linear models (McCullagh and Nelder, 1989) are re-

cently being discussed (see e.g., Myers, 1999). Second, the surface and peak are determined by

a parametric equation, usually of quadratic type. This implies that all interactions between the

predictors are assumed to be of product type. That this assumption is too restrictive is clearly seen

in our example of finding the maximum AIDS incidence in terms of age and calendar year which

is discussed in section 4. More generally, parametric models have the major weakness of not being

flexible in that one equation is assumed to relate the response to the predictors over the entire

range of values of the predictors considered.

Most of these problems can be alleviated by using nonparametric regression to generate the

response surface, but the study of extrema in this case has been limited. Multivariate nonpara-

metric response surfaces do not rely on distributional assumptions and allow the effects of and

interactions between the predictors to vary over the range of the predictors, providing flexibility

for the resulting surfaces (Müller, 1988). The use of nonparametric regression within RSM has re-

cently been recognized among its practitioners as an important part of the future direction of RSM

(Myers, 1999). However, optimization, a major consideration in RSM practice, has received very

little attention for nonparametric response surfaces. We note that in typical RSM applications, the
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levels of predictor combinations would be fixed in advance, so that a fixed design regression model

is appropriate. The case for one predictor (point estimates and asymptotic properties) was studied

by Müller (1985, 1989), but to our knowledge the multivariate case has received less attention. The

extension from one predictor to several is nontrivial, as will be demonstrated in the following.

As an example in a biological setting, we will use AIDS surveillance data to find the maximum

incidence of AIDS in California. AIDS incidence is modeled as a function of age (in years) and

calendar time (year) for the two racial/ethnic groups with the most AIDS cases in California

(Latinos and Whites). A confidence region for maximum AIDS incidence for each of these groups

is constructed, and compared with the quadratic RSM approach.

The paper is organized as follows: In section 2 we collect preliminary results on multivariate

nonparametric regression, emphasizing the fixed design case, and results from matrix theory, in

particular with respect to matrix norms. Drawing on these, we obtain asymptotic results for the

extrema of multivariate nonparametric regression functions (using kernel type smoothers), including

the derivation of 100(1− α)% confidence regions for the true location of extrema of a multivariate

nonparametric regression function in section 3. Using AIDS surveillance data as an example, we

provide an illustration of these results and comparisons with the RSM approach in section 4.

Finally, some further discussion and concluding remarks can be found in section 5. Proofs and

auxilary results are relegated to the Appendix.

2. Preliminaries

We consider here the standard set up for fixed design multivariate nonparametric regression

(see Müller, 1988). The model is:

(2.1) yi = g(xi) + εi,

where xi ∈ Ai ⊂ X ⊆ <m, m ≥ 1, for a smooth regression function g. With λ representing

Lebesgue measure in <m, we assume that the domain X of the data xi is compact, connected, and

measurable with 0 < λ(X ) < ∞, and that {Ai}{i=1,...,n} is a partition of X into n measurable,
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connected subsets (hence Ai
⋂

Aj = ∅, i 6= j). The data (xi, yi), i = 1, . . . , n are used to estimate

the multivariate regression function g : X → < in (2.1); denote this estimate as ĝ. The assumptions

for the errors εi, i = 1, . . . , n, are that for some r ≥ 2,

(M1) E(εi) = 0, V ar(εi) = σ2 < ∞, E|εi|r ≤ c < ∞, and the εi are iid.

Let ν = (ν1, . . . , νm) be a multiindex indicating that the νth
j partial derivative is to be taken

in the jth direction. As a special case, define αi = (0, . . . , 0, 1, 0, . . . , 0), where 1 occurs at the ith

position (and the other m-1 elements are 0). Define |ν| = ∑m
i=1 νi (hence |αj |=1), ν! = ν1!ν2! · · · νm!,

and ν = τ as νi = τi, i = 1, . . . , m. For z ∈ <m, define zτ = zτ1
1 · · · zτm

m . Let b ∈ <m denote the

bandwidth vector used to construct the estimate ĝ; we shall assume that b1 = . . . = bm = b with

b := b(n), a sequence of bandwidths satisfying b → 0 as n → ∞. We consider the following kernel

type estimator (Müller, 1988) for g(ν)(x):

(2.2) ĝ(ν)(x) =
1

b|ν|+m

n∑

i=1

[
∫

Ai

Kν(
x− s

b
)ds]yi

where Kν : X → < is a kernel function, with Kν(x−s
b ) denoting Kν(x1−s1

b1
, . . . , xm−sm

bm
).

Further assumptions are needed about the fixed design. Let xi ∈ Ai, where the sets Ai,

i = 1, . . . , n, form a partition of X , with

(M2) max{1≤i≤n}|λ(Ai)− λ(X )n−1| = o(n−1)

(M3) max{1≤i≤n}sup{w,z∈Ai}‖w − z‖2 = O(n−1/m);

here ‖ · ‖2 is the Euclidean norm in <m.

Let Lip(X ) denote the set of Lipschitz continuous functions on X and Ck(X ) the set of k times

continuously differentiable functions on X , for an integer k > |ν| which defines the smoothness of g,

and ultimately, if coupled with a kernel of order k, the rate of convergence MSE ∼ n−2(k−|ν|)/(2k+m).

We require the following properties for g(ν), Kν , and b:

(M4) For the regression function g, g(ν) ∈ Ck(X ) and g(ν), g(ν+αi+αj) ∈ Lip(X ) for each

i, j = 1, . . . , m and k ≥ 3.
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(M5) For the sequence of bandwidths b = b(n), n1/mb → ∞ and γ2
n = nb2(|ν|+1)+m →

∞ as n →∞.

(M6) For the kernel function Kν , Kν : T → < with support T ⊂ <m, where T is compact,

connected, and λ-measurable with λ(T ) = 1 and Kν ∈ Lip(T ). Furthermore, Kν is a

kernel of the order (|ν|, k), i.e., satisfies the moment properties

(M7)
∫

T
Kν(z)zτdz =





0, if 0 ≤ |τ | ≤ |ν|, τ 6= ν

(−1)|ν|ν!, if τ = ν

0, if |ν| < |τ | < k

We now quote some preliminary background results. It is assumed that any fixed point x

is in the interior of X (that is, x ∈ o
X ) to avoid boundary effects. The first two results can be

found in Müller and Prewitt (1993), while the third is a straightforward extension of a theorem in

Müller and Stadtmüller (1987). The more general conditions in Lemma 2.3 can be derived along

the lines of the univariate case found in Theorem 11.2 in Müller (1988). The first result provides

the asymptotically leading terms of the mean squared error of the multivariate kernel regression

estimator.

Lemma 2.1 Assume (M1)-(M7) hold, and for z = x−s
b let

(2.3) V =
∫

T
K2

ν (z)dz.

Then

Var(ĝ(ν)(x)) =
σ2λ(X )
nb2|ν|+m

[V + o(1)],

E(ĝ(ν)(x)) = b−|ν|
∫

T
Kν(z)g(x− zb)dz[1 + o(1)] + O(

1
n1/mb|ν|

),

E(ĝ(ν)(x))− g(ν)(x) =
∑

|ρ|=k

b|ρ|−|ν|[
g(ρ)(x)(−1)|ρ|

ρ!

∫

T
Kν(z)zρdz + o(1)] + O(

1
n1/mb|ν|

).

The second result provides the asymptotic normality of the multivariate kernel estimator.
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Lemma 2.2 Assume (M1)-(M7) hold and nb2k+m → d2 ≥ 0 as n →∞. Then for x ∈ o
X ,

[nb2|ν|+m]1/2[ĝ(ν)(x)− g(ν)(x)] D→ N (d
∑

|ρ|=k

g(ρ)(x)(−1)|ρ|

ρ!

∫

T
Kν(z)zρdz , σ2λ(X )V ).

The third result is on uniform convergence.

Lemma 2.3 Assume (M1)-(M7) hold, E|εi|r < ∞ for some r > 2, lim infn→∞nbmk > 0, and

lim infn→∞n1− 2
r bm[logn]−1 > 0. Then

sup{x∈X}|ĝ(ν)(x)− g(ν)(x)| = Op(bk−|ν| + [
logn

nb2|ν|+m
]1/2).

Note that the assumptions of Lemmas 2.2 and 2.3 constrain the value of k relative to the dimension

m. In particular, if b ∼ n−q, then the assumptions

nb2k+m → d2 ≥ 0 as n → ∞ and lim infn→∞nbmk > 0

require that km ≤ 2k + m. While for the case m = 2 there is no restriction on k, if m = 3 then

k ≤ 3, if m = 4 then k ≤ 2, and if m ≥ 5 then k ≤ 1, which implies k = 1.

A result that extends the univariate case of nonparametric extrema studied in Müller (1985)

to the multivariate case will be established next. We assume there is a unique point θ ∈ X that

maximizes g(ν)(·); that is, θ = argmax{x∈X}g(ν)(x). The empirical maximum θ̂ is the point in X

that maximizes the nonparametric estimate ĝ(ν)(·); that is, θ̂ = max{x∈X}ĝ(ν)(x). The proof of the

following result is in the Appendix.

Lemma 2.4 Assume (M1)-(M7) hold and that for a null sequence βn it holds that

(2.4) sup{x∈X}|ĝ(ν)(x)− g(ν)(x)| = Op(βn),

and moreover that for any m-dimensional ε-ball Bε(θ) surrounding θ, there exists c > 0 such that

(2.5) |g(ν)(x)− g(ν)(θ)| > c‖x− θ‖2 for x ∈ Bε(θ).
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Then

(2.6) ‖θ̂ − θ‖2 = Op(βn)

and

(2.7) |ĝ(ν)(θ̂)− g(ν)(θ)| = Op(βn).

Combining this with Lemma 2.3, one immediately obtains a consistency result for the estimation

of the peak location. The asymptotic distribution of the peak location will be investigated in the

next section in more detail.

3. Limit Distribution of the Peak Location Estimate

The asymptotics of the estimate θ̂ = max{x∈X}ĝ(ν)(x) of θ = argmax{x∈X}g(ν)(x) follow from

those of ĝ(ν) combined with the local geometry of the curve near its extremum. By (2.1) and

the Multivariate Mean Value Theorem (recall αi = (0, . . . , 0, 1, 0, . . . , 0), where 1 occurs at the ith

position and the other m-1 elements are 0)

(3.1) 0 = ĝ(ν+αi)(θ̂) = ĝ(ν+αi)(θ) + [∇ĝ(ν+αi)(θ∗i )]
T (θ̂ − θ), i = 1, . . . , m

for some mean values θ∗i ∈ X such that θ∗i = (1 − λi)θ + λiθ̂, 0 ≤ λi ≤ 1. Using g(ν+αi)(θ) =

ĝ(ν+αi)(θ̂) = 0 in (3.1) yields

(3.2) g(ν+αi)(θ)− ĝ(ν+αi)(θ) = [∇ĝ(ν+αi)(θ∗i )]
T (θ̂ − θ).

Defining

dn =




ĝ(ν+α1)(θ)− g(ν+α1)(θ)
...

ĝ(ν+αm)(θ)− g(ν+αm)(θ)




m×1

,

A =




[∇g(ν+α1)(θ)]T

...

[∇g(ν+αm)(θ)]T




m×m

, Bn =




[∇ĝ(ν+α1)(θ∗1)]T

...

[∇ĝ(ν+αm)(θ∗m)]T




m×m

,
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we may rewrite (3.2) as

(3.3) dn = Bn(θ̂ − θ) = A[(θ̂ − θ) + Rn],

where Rn = [A−1 − B−1
n ]dn. Setting γ2

n = nb2(|ν|+1)+m, the asymptotic behavior of γndn is of

interest, and we also need to show γnRn
p→ 0. For the latter, we need some additional assumptions.

Define

K(αi)
ν (z) =

∂

∂zi
Kν(z) and K

(αi+αj)
ν (z) =

∂2

∂zi∂zj
Kν(z),

and assume θ, θ̂ ∈ o
X throughout. Note that if K

(αi)
ν ∈ Lip(T ), applying an integration by parts

argument to (M6) and (M7) yields

(3.4)
∫

X
K(αi)

ν (z)zτdz =





0, if 0 ≤ |τ | ≤ |ν + αi| = |ν|+ 1, τ 6= ν + αi

(−1)|ν|ν!(νi + 1), if τj = νj , j 6= i, τi = νi + 1

0, if |ν + αi| < |τ | < k + 1

and therefore the results of Lemmas 2.1 - 2.4 can be applied with ν and k replaced with ν + αi

and k + 1, respectively. A similar result holds if K
(αi+αj)
ν ∈ Lip(T ) where ν and k are replaced by

ν +αi +αj (with |ν +αi +αj | = |ν|+2) and k +2, respectively. We add the following assumption:

(M8) K
(αi)
ν , K

(αi+αj)
ν ∈ Lip(T ) for all i, j = 1, . . . ,m,

and another assumption on the bandwidths will be:

(M9) For a constant d ≥ 0, logn
nb2|ν|+m+4 → 0 and nb2k+m+2 → d2 ≥ 0 as n →∞.

Define

β(ρ, αi) =
1
ρ!

∫

T
K(αi)

ν (z)zρdz

V (αi, αj) =
∫

T
K(αi)

ν (z)K(αj)
ν (z)dz , 1 ≤ i, j ≤ m.

We are now ready to state our main result.
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Theorem 3.1 Under (M1)-(M9),

γn(θ̂ − θ) D→ Nm(dA−1µ,A−1Σ[A−1]T )

where

µ = [µ1, . . . , µm]T , µj = (−1)k+1
∑

|ρ|=k+1;ρj≥1

g(ρ)(θ)β(ρ, αj) , j = 1, . . . , m

A =




[∇g(ν+α1)(θ)]T

...

[∇g(ν+αm)(θ)]T




m×m

, Σ = λ(X )σ2




V (α1, α1) · · ·V (α1, αm)
...

. . .
...

V (αm, α1) · · ·V (αm, αm)


 .

A primary application of this result is in the construction of a confidence region for θ. As θ̂

has an asymptotic Gaussian distribution, the 100(1− α)% confidence region will be based on the

(1− α)th percentile of the χ2
m distribution, based on standard multivariate normality theory. This

is stated explicitly in the following two corollaries.

Corollary 3.1 Let (M1)-(M9) hold. Then

(3.5) γn{A−1Σ[A−1]T }−1/2
m×m[θ̂ − θ − dA−1µ] D→ Nm(0, Im),

where A, Σ, and µ are as stated in Theorem 3.1 and Im is the m×m identity matrix.

Corollary 3.2 Let (M1)-(M9) hold. As n → ∞, a 100(1 − α)% confidence region for θ ∈ <m,

the maximizer of the function g(ν) in (2.1) estimated by θ̂, the maximizer (or minimizer) of the

nonparametric kernel type estimate in (2.2), is given by

(3.6) [θ̂ − θ − dA−1µ]T {A−1Σ[A−1]T }−1[θ̂ − θ − dA−1µ] ≤ χ2
m(1− α),

where χ2
m(1 − α) is the 100(1 − α) percentile of the Chi square distribution with m degrees of

freedom and A, Σ, and µ are as in Theorem 3.1.

We conclude this section by noting that confidence regions (3.6) can be greatly simplified when

V (αi, αj) = 0 for each i 6= j, i, j = 1, . . . , m. This case is of particular interest because it occurs

when one uses product kernels, which are discussed briefly in the appendix.
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Corollary 3.3 Assume (M1)-(M9) hold. If V (αi, αj) = 0 and V (αi, αi) > 0 for all i 6= j, with

i, j = 1, . . . ,m, then the asymptotic confidence regions (3.6) may be written as

(3.7) [θ̂ − θ − dA−1µ]T H [θ̂ − θ − dA−1µ] ≤ χ2
m(α),

where

(3.8) H =
1

λ(X )σ2




∑m
j=1

g(ν+αj+α1)(θ)g(ν+αj+α1)(θ)
V (αj ,αj)

· · · ∑m
j=1

g(ν+αj+α1)(θ)g(ν+αj+αm)(θ)
V (αj ,αj)

...
. . .

...
∑m

j=1
g(ν+αj+αm)(θ)g(ν+αj+α1)(θ)

V (αj ,αj)
· · · ∑m

j=1
g(ν+αj+αm)(θ)g(ν+αj+αm)(θ)

V (αj ,αj)


 .

Applying these results in practice requires the substitution of the unknown quantities d, σ2,

and g(ρ)(θ) for several different indices ρ (with |ρ| ≥ 1) that appear in the asymptotic confidence

regions. A natural estimate for g(ρ)(θ) is ĝ(ρ)(θ), which we know from Lemma 2.4 to converge in

probability to g(ρ)(θ), although the rate depends on |ρ| (in particular, we would need to assume

logn
nb2|ρ|+m → 0 as n →∞). To estimate σ2, a residual sum of squares similar to parametric regression

models can be used:

σ̂2 =
1
n

n∑

i=1

{yi − ĝ(xi)}2.

An alternative approach which was implemented for the data analysis in section 4 is to estimate

σ̂2 via a binning technique. Using the framework of section 2, the jth set in this partition consists

of κj neighboring sets of the original partition {Ai}{i=1,...,n} of the data. The new partition then

contains n∗ sets composed of κj elements for j = 1, . . . , n∗. The estimator is given by

(3.9) σ̂2 =
1
n∗

n∗∑

j=1

1
κj − 1

κj∑

l=1

(yjl − yl)
2 , yl =

1
κj

κj∑

l=1

yjl.

Under (M1)-(M3), Müller and Prewitt (1993) showed σ̂2 p→ σ2.

4. Application: Confidence Regions for Peak Location of AIDS

Incidence in California

In a data application example, we compare here the confidence region for the maximizing

argument of a parametric response surface as obtained by fitting a quadratic regression surface with
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that of the nonparametric model developed above, for the case of two predictors (m = 2). The data

considered here are AIDS case surveillance data from the California Department of Health Services,

Office of AIDS. All cases of AIDS diagnosed in California are reported, along with demographic

information such as age, date, and county of residence at diagnosis, and any AIDS-defining illnesses

and their date of diagnosis. Over 120,000 cases of AIDS have been diagnosed in California and

reported as of January 1, 2001. We will consider examining the peak of AIDS incidence (number of

AIDS cases occurring in a specified population per year per 100,000 of that population) in California

among different racial/ethnic groups with respect to calendar time and age at AIDS diagnosis as

predictors.

AIDS incidence was calculated each year between 1985 and 1995 for each age between 20 and

60 among Whites and Latinos in California (the two largest ethnic groups in the State) from the

AIDS surveillance data base and census-based population projections available from the California

Department of Finance. This provided two data sets for Whites and Latinos that include as response

AIDS incidence and as predictors calendar time (in years, and recorded as 0 = 1985, 1 = 1986, . . .,

10 = 1995) and age at AIDS diagnosis (in years). These data are available from the authors upon

request.

4.1 Parametric Confidence Region for Two Predictors

The quadratic response surface model is

(4.1) y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε,

where we assume that (M1) from section 2 holds for ε, and that (4.1) is to be fitted by the iid data

(yi, x1i, x2i), i = 1, . . . , n via least squares. The peak coordinates are found to be

(4.2) θP1 =
2β22β1 − β12β2

β2
12 − 4β11β22

and θP2 =
2β2β11 − β12β1

β2
12 − 4β11β22

.

We will assume that these are the coordinates of a maximum. Under regulatory conditions, we will

have by the delta method, letting Σ(β) be the limiting covariance matrix of parameter estimates

β̂ = [β̂0, β̂1, β̂2, β̂11, β̂22, β̂12]T ,
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n1/2




θ̂P1 − θP1

θ̂P2 − θP2


 D→ N2(




0

0


 ,PΣ(β)PT )

where PT =




∂θP1
∂β0

∂θP1
∂β1

∂θP1
∂β2

∂θP1
∂β11

∂θP1
∂β22

∂θP1
∂β12

∂θP2
∂β0

∂θP2
∂β1

∂θP2
∂β2

∂θP2
∂β11

∂θP2
∂β22

∂θP2
∂β12




β=β̂

.

In particular, if

(4.3) [PΣ̂(β̂)PT ]−1 =




σ̂11 σ̂12

σ̂21 σ̂22


 ,

an asymptotic 100(1− α)% confidence region for [θP1, θP2]T is given by

(4.4)




θ̂P1 − θP1

θ̂P2 − θP2




T 


σ̂11 σ̂12

σ̂21 σ̂22







θ̂P1 − θP1

θ̂P2 − θP2


 ≤ χ2

2(1− α).

The quadratic response surface (4.1) was fitted to the AIDS incidence data with predictor x1

chosen as calendar time (1985 through 1995, recoded as 0 through 10), and predictor x2 as age

at AIDS diagnosis (20 through 60, in years); the response y is AIDS incidence. These parametric

surfaces (one each for California’s Latino and White population) are shown in Figure 1. We see

that the maxima of these surfaces are located at different points. For Latinos the maximum AIDS

incidence occurred at [θ̂time , θ̂age] = [1993.3 , 40.1 years], while among Whites at [θ̂time , θ̂age] =

[1991.5 , 40.4 years]. The confidence regions for peak AIDS incidence over time and age were

calculated via (4.2)-(4.4) and are presented in section 4.3.

4.2 Nonparametric Surface Estimate for AIDS Incidence Data

To generate the nonparametric response surface estimates for the AIDS incidence data, we used

product kernels (see Appendix) that were implemented by linear locally weighted least squares (see

Appendix), with the bandwidths calculated via the cross-validation method. The kernels used were

K(z) = K(z1, z2) = (1− z2
1)

2(1− z2
2)

2 with z1, z2 ∈ [−1, 1].
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The nonparametric response surfaces for AIDS incidence among the Latino and White popu-

lations in California are shown in Figure 2. The cross-validation bandwidth for the Latino AIDS

incidence data was found to be [btime , bage] = [1.65 years , 4.66 years], and that for Whites to

be [btime , bage] = [1.13 years , 2.56 years]. The larger bandwidth for the Latino data is largely

attributable to the increased sparseness of the data as compared to the data for Whites, particu-

larly for older ages early in the epidemic. According to these nonparametric surfaces, the maximum

AIDS incidence for Latinos occurred at [θ̂time , θ̂age] = [1992.25 , 34.0 years], while among Whites

it occurred at [θ̂time , θ̂age] = [1991.75 , 36.0 years].

4.3 Parametric and Nonparametric Confidence Regions for AIDS Incidence Data

We construct parametric 95% confidence regions for the age and calendar time of peak AIDS

incidence in California using the results of sections 4.1 and 4.2. From (4.4), we obtain

Latinos:




θtime − 1993.3

θage − 40.1




T 


8.16 1.30

1.30 11.87







θtime − 1993.3

θage − 40.1


 ≤ 5.99

Whites:




θtime − 1991.5

θage − 40.4




T 


38.39 4.20

4.20 17.37







θtime − 1991.5

θage − 40.4


 ≤ 5.99

These regions are plotted in Figure 3 (the two highest ellipses). As these regions do not overlap, we

would conclude that under the parametric modeling assumptions the age-specific peak incidence

of AIDS among Latinos and Whites occurred at different times in California with 95% confidence.

In particular, AIDS incidence among Whites peaked significantly earlier than among Latinos in

California.

Nonparametric confidence regions for the age and calendar time of maximum AIDS incidence

among Latinos and Whites in California were obtained using Lemma A.7 in the Appendix, Corollary

3.3, and estimates for unknown quantities obtained from the data. For simplicity, we assumed

d = 0 (so that the estimates for θ = [θtime , θage] are assumed asymptotically unbiased). As

13



discussed in section 4, we used ĝ(ρ)(θ̂) to estimate g(ρ)(θ), where in this case ν = (0, 0) and

m = 2, so that the values of ρ to be considered are ρ = (1, 0) , (0, 1) , (1, 1) , (2, 0) , (0, 2). The

bandwidths used in these calculations were 1.25 times those of the cross-validation bandwidths

estimated to generate ĝ (for Latinos 1.25 × [1.65 years, 4.66 years], and for Whites 1.25 × [1.13

years, 2.56 years]); slightly increased bandwidths for derivative estimation were suggested in Müller

(1988). More details about the estimates can be found in the Appendix. For each racial/ethnic

group, σ̂2 was calculated using (3.9), for which we obtained σ̂2 = 70.19 for the Latino group and

σ̂2 = 147.98 for the White group. For both groups, λ(X ) = 10 × 40 = 400 (where 10 is

from the 10-year period 1985-1995 and 40 from the width of the age range 20-60). As we assumed

d = 0, the primary concern is the estimation of the variance-covariance structure of θ̂, for which

the relevant estimates are shown in the Appendix.

Using these estimates and noting that χ2
2(0.05) = 5.99, the nonparametric 95% confidence

regions of the age-specific calendar times of peak AIDS incidence were found to be defined by

Latinos:




θtime − 1992.25

θage − 34.0




T 


45.70 18.61

18.61 8.01







θtime − 1992.25

θage − 34.0


 ≤ 5.99

Whites:




θtime − 1991.75

θage − 36.0




T 


25.04 − 22.02

−22.02 32.92







θtime − 1991.75

θage − 36.0


 ≤ 5.99

These regions are plotted in Figure 3 (the two lowest ellipses). These regions do overlap each

other, and we would conclude that under the nonparametric response surface scheme, there was

no significant difference between the age-specific time of peak AIDS incidence among Latinos and

Whites in California. Thus we arrive at a different conclusion from that reached by fitting the

second order parametric response surface model of section 4.1.

5. Concluding Remarks

A comparison of point estimates and associated confidence regions for the calendar time and age

of diagnosis for the peak location in AIDS incidence between the second order parametric response

14



surface model from section 4.1 and the nonparametric approach from section 4.2 reveals several

interesting features. First, the nonparametric confidence regions are larger than their respective

parametric regions, which is expected as the nonparametric fits have larger variances. Second, the

nonparametric models are expected to have smaller biases, and the nonparametric ellipses in Figure

3 suggest that AIDS incidence peaked among a younger segment of both Latinos and Whites in

California than suggested by the parametric fit (6 years younger for Latinos, 4 years younger for

Whites). Third, the nonparametric approach suggests the peak in AIDS incidence occurred about

one year earlier in the Latino group (in early 1992) than suggested by the parametric model (in

early 1993), though the nonparametric confidence region extends out to late 1993. Both models

agree in predicting that peak AIDS incidence occurred during the second half of 1991 for the White

group.

Comparing parametric and nonparametric models, discrepancies emerge regarding the timing of

peak AIDS incidence among Latinos and Whites. The parametric models suggest AIDS incidence

peaked significantly earlier for Whites than Latinos (by about 1.8 years), with virtually no age

difference between the two populations (Figure 3). In contrast, the nonparametric models indicate

that the peaks occurred much nearer to each other (Whites about 0.5 years, or 6 months, earlier

than Latinos), and that the age in the Latino population where the peak occurred was slightly

younger (34) than in the White population (36). From epidemiologic considerations, it appears

that the results obtained with the nonparametric approach reflect the underlying situation much

better than those obtained with the parametric approach.
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Appendix

This appendix consists of six subsections. The first contains the derivation of an auxiliary

result in matrix perturbation theory that is needed in the proof of the main theorem. The second

subsection contains further auxiliary results and proofs, including those needed to establish the

main theorem, the proof of the main theorem itself, and proofs of the subsequent confidence region

expressions. The third subsection gives a brief overview of product kernels, while the fourth provides

a general outline of the asymptotic equivalence of locally weighted least squares estimators and those

of kernel-type in the fixed design case. The fifth and sixth subsections detail the calculations used

to generate the response surfaces and confidence regions in Figures 1-3.

A.1 Preliminary Results from Matrix Perturbation Theory

Recall ‖ · ‖2 is the Euclidean norm in <m, and let Mm(<) denote the space of all m × m

real-valued matrices. Let ‖ · ‖ denote the matrix norm

‖ · ‖ : H ⊆ <m×m → < with ‖H‖ = sup{x∈<m:‖x‖2≤1}‖Hx‖2

We cite two results from Lewis (1991) (Lemmas A.1 and A.2) and establish a third (Lemma A.3).

Lemma A.1 (Banach) Let W ∈ Mm(<) and ‖ · ‖ a matrix norm on Mm(<). If ‖W‖ < 1, then

I + W is invertible and
1

1 + ‖W‖ ≤ ‖(I + W )−1‖ ≤ 1
1− ‖W‖ .

Lemma A.2 Let V ∈ Mm(<) be invertible. If V is perturbed into a matrix V + P where

‖P‖ < 1
‖V −1‖ for some matrix norm ‖ · ‖, then V + P is invertible.

Lemma A.3 Let A ∈ Mm(<) be invertible. For all B ∈ Mm(<) such that

(A.1) ‖A−B‖ <
1

2‖A−1‖ ,
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B−1 exists and there exists 0 < c < ∞ such that

(A.2) ‖B−1 −A−1‖ ≤ c‖A−1‖2‖A−B‖.

Proof. Setting V = A and P = B − A in Lemma A.2 establishes the existence of B−1. To show

(A.2), note

‖B−1 −A−1‖ ≤ ‖A−1‖‖AB−1 − I‖ ≤ ‖A−1‖‖A−B‖‖B−1‖.

Rewrite B = A[I −A−1(A−B)]. By (A.1),

(A.3) ‖A−1(A−B)‖ <
1
2

,

and Lemma A.1 shows I −A−1(A−B) is invertible. We can then write

‖B−1 −A−1‖ ≤ ‖A−1‖‖A−B‖‖(I −A−1(A−B))−1A−1‖

≤ ‖A−1‖2‖A−B‖‖(I −A−1(A−B))−1‖

≤ ‖A−1‖2‖A−B‖
1− ‖A−1(A−B)‖

≤ c‖A−1‖2‖A−B‖,

by taking W = −A−1(A−B) in Lemma A.1 and observing (A.3). 2

A.2 Auxiliary Results and Proofs

We list several lemmas that are needed for the proof of Theorem 3.1 and proofs of results that

are stated in the main sections (including Theorem 3.1 itself).

Lemma A.4 Assume (M1)-(M8) hold. Let A, Bn, and γn be as in Section 3, and assume A−1

exists. If logn
nb2|ν|+m+4 → 0, then ‖A−Bn‖ = Op(bk−‖ν‖ + [ logn

nb2|ν|+m+4 ]1/2).

Proof. By definition

‖A−Bn‖ = sup{x∈X :‖x‖2≤1}‖




[∇g(ν+α1)(θ)−∇ĝ(ν+α1)(θ∗1)]T

...

[∇g(ν+αm)(θ)−∇ĝ(ν+αm)(θ∗m)]T


x‖2
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≤ sup{x∈X :‖x‖2≤1}‖Ux‖2

where Um×m = [uij ], 1 ≤ i, j ≤ m (here i and j correspond to the row and column, respectively)

with

uij =
∂2g(ν)(θ)
∂xi∂xj

− ∂2ĝ(ν)(θ∗i )
∂xi∂xj

.

Hence sup{x∈X :‖x‖2≤1}‖Ux‖2 ≤ {∑m
i=1 (max{j:1≤j≤m}|[ui]Tj |)2}1/2 = m max{1≤i,j≤m}|uij |.

Applying the triangle inequality, we note that

|uij | = |g(ν+αi+αj)(θ)− ĝ(ν+αi+αj)(θ∗i )|

(A.4) ≤ |g(ν+αi+αj)(θ)− g(ν+αi+αj)(θ∗i )|+ |g(ν+αi+αj)(θ∗i )− ĝ(ν+αi+αj)(θ∗i )|

Arguing as in (3.4) for K
(αi+αj)
ν , noting K

(αi+αj)
ν ∈ Lip(X ), and applying Lemma 2.3 to this case

yields

|g(ν+αi+αj)(θ∗i )− ĝ(ν+αi+αj)(θ∗i )| = Op(β∗n) for all i, j,

where

β∗n = bk+2−(|ν|+|αi|+|αj |) + [
logn

nb2(|ν|+|αi|+|αj |)+m
]1/2 = bk−|ν| + [

logn

nb2|ν|+m+4
]1/2.

Furthermore, we note that ‖θ−θ∗i ‖2 ≤ ‖θ− θ̂‖2 = Op(β∗n) by Lemma 2.4. Applying the Continuous

Mapping Theorem, the first term of (A.4) is bounded by Op(β∗n). Thus |uij | = Op(β∗n) for all i, j,

and the result follows. 2.

Lemma A.5 Under (M1)-(M9), γn‖(A−1 −B−1
n )dn‖ p→ 0.

Proof. By the Cauchy-Schwarz Inequality, γn‖(A−1 − B−1
n )dn‖ ≤ γn‖(A−1 − B−1

n )‖‖dn‖. By

Lemma A.4, P [‖A − Bn‖ < 1
2‖A−1‖ ] → 1 as n → ∞. Hence by Lemma A.3 it suffices to show

γn‖A−Bn‖‖dn‖ p→ 0. Now notice that

‖dn‖ = sup{x∈X :‖x‖2≤1}‖




ĝ(ν+α1)(θ)− g(ν+α1)(θ)
...

ĝ(ν+αm)(θ)− g(ν+αm)(θ)


x‖2 = Op([

1
nb2[|ν|+1]+m

]1/2)
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by Lemma 2.2, using a derivative of order |ν|+ 1. Combining this with (2.7) and Lemma A.4 gives

γn‖A−Bn‖‖dn‖ ≤ [nb2(|ν|+1)+m]1/2 Op(bk−|ν| + [
logn

nb2|ν|+m+4
]1/2) Op([

1
nb2[|ν|+1]+m

]1/2)

p→ 0. 2

Lemma A.6 If (M1)-(M8) hold, then for all i 6= j, i, j = 1, . . . , m, with B(ĝ(ν+αi)) = E[ĝ(ν+αi)(θ)]−

g(ν+αi)(θ):

(A.5) B(ĝ(ν+αi)) = bk−|ν|(−1)k+1
∑

|ρ|=k+1;ρi≥1

[g(ρ)(θ)β(ρ, αi) + o(1)] + O[
1

n1/mb|ν|+1
]

(A.6) Var[ĝ(ν+αi)(θ)] =
σ2λ(X )

nb2|ν|+m+2
[V (αi, αi) + o(1)]

(A.7) Cov[ĝ(ν+αi)(θ), ĝ(ν+αj)(θ)] =
σ2λ(X )

nb2|ν|+2m+2
[V (αi, αj) + o(1)]

Proof. (A.5) and (A.6) follow directly from Lemma 2.1 by substituting |ν + αi| = |ν|+ 1 and k + 1

for |ν| and k, respectively, while (A.7) follows from similar arguments as in Lemma 6.3 of Müller

and Prewitt (1993). 2

Proof of Lemma 2.4. We will consider the case of maxima. As argmax{x∈X}g(ν)(x) is unique,

according to (2.5) there exists δ > 0 such that g(ν)(θ) > g(ν)(x) + δ for x /∈ Bε(θ). Rewriting,

(A.8) g(ν)(θ)− δ

2
> g(ν)(x) +

δ

2
for x /∈ Bε(θ).

As βn → 0, (2.4) implies

P [sup{x∈X}|ĝ(ν)(x)− g(ν)(x)| ≤ δ

2
] → 1, as n →∞.

Hence,

P [g(ν)(θ)− δ

2
≤ ĝ(ν)(θ) ≤ g(ν)(θ) +

δ

2
] → 1, as n →∞.

Combining this with (A.8) yields

P [ĝ(ν)(θ) ≥ g(ν)(θ)− δ

2
> g(ν)(x) +

δ

2
> g(ν)(x)] → 1, as n →∞ for x /∈ Bε(θ),
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which implies P [θ̂ ∈ Bε(θ)] → 1, as n → ∞. Applying (2.5) for θ̂, recalling that θ is the unique

maximum of g(ν), and using the triangle inequality then yields

‖θ̂ − θ‖2 <
1
c
[g(ν)(θ)− g(ν)(θ̂)]

≤ 1
c
[(ĝ(ν)(θ̂)− ĝ(ν)(θ)) + g(ν)(θ)− g(ν)(θ̂)]

≤ 1
c
[|ĝ(ν)(θ̂)− g(ν)(θ̂)|+ |ĝ(ν)(θ)− g(ν)(θ)|] = Op(βn), by (2.4).

Result (2.7) follows from the triangle inequality combined with (2.4). That is,

|ĝ(ν)(θ̂)− g(ν)(θ)| ≤ {g(ν)(θ)− g(ν)(θ̂)}+ |ĝ(ν)(θ̂)− g(ν)(θ̂)| = Op(βn). 2

Proof of Theorem 3.1. Redistributing terms in (3.3) yields

γnA−1dn − γnRn = γn(θ̂ − θ).

By Lemma A.5, γnRn
p→ 0, and therefore by Slutsky’s Theorem and the assumption that A−1

exists, it suffices to show γndn
D→ Nm(µ,Σ). Note γndn = γnφ(θ) + γnψ(θ), where

φ(θ) = [φ1, . . . , φm]T , φi = ĝ(ν+αi)(θ)−E[ĝ(ν+αi)(θ)] , i = 1, . . . , m

ψ(θ) = [ψ1, . . . , ψm]T , ψi = E[ĝ(ν+αi)(θ)]− g(ν+αi)(θ) , i = 1, . . . , m

Note that by the standard Taylor expansion for the bias

ψi = bk−|ν|(−1)k+1
∑

|ρ|=k+1;ρi≥1

[g(ρ)(θ)β(ρ, αi) + o(1)] + O[
1

n1/mb|ρ|+1
]

so that γnψ(θ) → dµ uniformly in X . For the random part γnφ(θ), we apply the Cramer-Wold

device and show that for any a ∈ <m

(A.9) aT γnφ(θ) D→ N (0, Sθ)

with

Sθ = σ2λ(X )
m∑

j=1

a2
jV (αj , αj) + 2σ2λ(X )

m∑

j=1

m∑

k 6=j

ajakV (αj , αk).
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By definition and (2.3)

aT γnφ(θ) = γn

m∑

j=1

aj{ĝ(ν+αj)(θ)− E[ĝ(ν+αj)(θ)]} =
n∑

i=1

Wiεi ,

where

Wi =
γn

b|ν+αj |+m

m∑

j=1

aj [
∫

Ai

K
(αj)
ν (

t− s

b
)ds] , εi = yi − E(yi).

Using for example Theorem 4.2 in Müller (1988), the Lindeberg condition implies
∑n

i=1
Wiεi

(σ2
∑n

i=1
W 2

i )1/2

D→ N (0, 1) if

(A.10) G(Wi) =
max{1≤i≤n}|Wi|
(
∑n

i=1 W 2
i )1/2

→ 0 as n →∞.

For the numerator of G(Wi), the triangle inequality, K
(αi)
ν ∈ Lip(X ), and mean values ξij (with

i = 1, . . . , n, j = 1, . . . , m) yield with (2.4) and (2.5)

max{1≤i≤n}|Wi| ≤ max{1≤i≤n}|
[nb2|ν|+2+m]1/2

b|ν|+m+1
|

m∑

j=1

|aj ||
∫

Ai

K
(αj)
ν (

t− s

b
)ds|

= [
λ(X )

[nbm]1/2
+ o(

1
[nbm]1/2

)]
m∑

j=1

|aj |O(
1

n1/mb
) → 0 by (2.7).

For the denominator of G(Wi), note

σ2
n∑

i=1

W 2
i = Var(γn

m∑

j=1

aj{ĝ(ν+αj)(θ)−E[ĝ(ν+αj)(θ)]})

=
γ2

nσ2λ(X )
nb2|ν|+2+m

{
m∑

j=1

a2
j [V (αj , αj) + o(1)] + 2

m∑

j=1

m∑

k 6=j

ajak[V (αj , αk) + o(1)]}

→ Sθ by Lemma A.6.

Therefore, (A.10) and as a consequence, (A.9) are satisfied, whence the result follows. 2

Proof of Corollary 3.3. By Corollary 3.2, the confidence region is given by (3.6). Now V (αi, αj) =

0 and V (αi, αi) > 0 for all i 6= j, i, j = 1, . . . , m implies that Σ−1 exists. As A is symmetric,

{A−1Σ[A−1]T }−1 = AΣ−1A. Note that

AΣ−1A =
1

λ(X )σ2




[∇g(ν+α1)(θ)]T

...

[∇g(ν+αm)(θ)]T







1
V (α1,α1) · · · 0

...
. . .

...

0 · · · 1
V (αm,αm)







[∇g(ν+α1)(θ)]T

...

[∇g(ν+αm)(θ)]T


 = H. 2
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A.3 Product Kernels

We discuss here the special case where the m-dimensional kernel (with assumptions (M6) and

(M7)) can be written as a product of m univariate kernels,

(A.11) Kν(z) =
m∏

j=1

Kνj (zj).

It is assumed that the m univariate kernels Kνj are such that for each j = 1, . . . , m the univariate

equivalents of (M6) and (M7) hold, namely

[P1] Kνj has support [−τj , τj ] , τj > 0

[P2] Kνj ∈ Lip([−τj , τj ])

[P3]
∫

T
Kνj (zj)zτ

j dzj =





0, if 0 ≤ τ < k + νj − |ν|, τ 6= νj

(−1)νjνj !, if τ = νj

βj 6= 0, if τ = k + νj − |ν|

As discussed in Müller and Prewitt (1993), under these conditions for (A.11), it follows that T =
∏m

j=1[−τj , τj ] , Kν ∈ Lip(T ), and Kν satisfies (M6) and (M7). Extending these results further,

we note that if

[P4] Kνj ∈ Ck and K
′
νj

, K
′′
νj
∈ Lip([−τj , τj ]) for each j = 1, . . . , m,

then Kνj satisfies (M8). As a consequence, the results of section 3 are valid when using the product

kernel set up of (A.11) with the assumptions [P1]-[P4]. This leads to the following result that is

relevant in calculating confidence regions for θ as discussed in Corollaries 3.2 and 3.3.

Lemma A.7 Assume (M1)-(M5) and (M9) hold, and that the kernel Kν in (2.2) is of the form in

(A.11) such that [P1]-[P4] hold. Then

V (αi, αj) =
∫

T
K(αi)

ν (z)K(αj)
ν (z)dz = 0 for all i 6= j , i, j = 1, . . . ,m.
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Proof. Without loss of generality, we use i = 1, j = 2. Note

V (α1, α2) = [
∫ τ1

−τ1
K
′
ν1

(z1)Kν1(z1)dz1][
∫ τ2

−τ2
K
′
ν2

(z2)Kν2(z2)dz2][
∫ τm

−τm

· · ·
∫ τ3

−τ3

m∏

j=3

K2
νj

(zj)dz3 · · · dzm].

But
∫ τ1
−τ1

K
′
ν1

(z1)Kν1(z1)dz1 = 0 by an integration by parts argument (let v = Kν1(z1) and du =

K
′
ν1

(z1). This implies dv = K
′
ν1

(z1) and u = Kν1(z1)), and noting Kν1(−τ1) = Kν1(τ1) = 0, the

result follows. 2

A.4 Relation of Kernel Estimators to Locally Weighted Least Squares Estimators

Although the results to this point have been established using the kernel-type estimators of (2.2),

we briefly discuss their validity when using the locally weighted least squares (LWLS) estimator.

We assume the fixed design regression case. Recall the data are of the form (xi, yi), where xi =

[xi1, . . . , xim]T . Using the multiindex notation of section 2, the m-dimensional LWLS estimator fits

a local polynomial of degree p at u = [u1, . . . , um]T as a solution to the problem

(A.12) Minimize
n∑

i=1

{yi −
p∑

|τ |=0

βτ1···τm(u1 − xi1)τ1 · · · (um − xim)τm}2 G(
u− xi

b
)

where the function G(u−xi
b ) = G(u1−xi1

b1
, . . . , um−xim

bm
) serves as a kernel weighting function using

bandwidth b = [b1, . . . , bm]T and where it is again assumed that b1 = . . . = bm = b.

In order to estimate g(ν)(u), we must have |ν| ≤ p < k (with k as in (M4)); for simplicity we

work with the case |ν| = 0 and p = 1, i.e., linear LWLS estimation of the function g in (2.1). This

case was studied in detail by Ruppert and Wand (1994), where the estimator is shown to be α̂ in

(A.13) {α̂, β̂}(u) = argmin{α,β}
n∑

i=1

{yi − α− βT [u− xi]}2 G(
u− xi

b
),

providing

(A.14) ĝ(u) = α̂(u).

In the fixed design case where m=1, Müller (1987) showed that for any ν, the LWLS estimator

described by (A.12) is asymptotically equivalent to that given by the kernel-type estimator of (2.2)

when setting G = K for nonnegative kernels K ≥ 0 and using the unique decomposition K = GP
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into a polynomial of degree (k − 2) and a nonnegative weight function G ≥ 0 with
∫

G(u)du = 1.

This equivalence is based on recognizing that both (2.2) and the LWLS estimator (the latter through

the Gauss-Markov Theorem) can be written as

(A.15) ĝ(ν)(u) =
n∑

i=1

wi,n,ν(u)yi.

Letting wK,i and wG,i denote the weights of (A.15) in the m=1 case for the kernel-type estimator

of (2.2) and the LWLS estimator described by (A.12), respectively, Müller (1987) showed

(A.16) lim{n→∞}sup{1≤i≤n} |
wG,i

wK,i
− 1| = 0 , defining

0
0

= 1.

As a consequence of this asymptotic equivalence, it was shown that given a LWLS estimate of

ĝ(ν)(u) obtained by (6.1) where m = 1, one could construct a corresponding kernel estimate of

the form (2.2). The asymptotic consistency and distribution properties of both estimators would

be the same, as a consequence of (6.6). These results are expected to carry over to the cases

m > 1 , |ν| ≥ 0.

A.5 Parametric Model Estimates for AIDS Incidence Data

The table below presents parameter values for model (4.1)

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε

estimated by least squares for Latinos and Whites in California with

y = AIDS incidence (cases/100,000 population)

x1 = Time of AIDS diagnosis (year) , x2 = Age at AIDS diagnosis (years)
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Parameter Estimate Latinos Whites

β̂0 (intercept) -133.9750 -200.1491
β̂1 (time) 10.2645 13.7943
β̂2 (age) 7.4376 11.6765

β̂11 (time2) -0.5916 -0.9484
β̂22 (age2) -0.0916 -0.1415

β̂12 (time× age) -0.0118 -0.0367
θ̂time (from [4.2]) 1993.2741 1991.4897
θ̂age (from [4.2]) 40.0596 40.4065

σ̂2 = s2 126.3482 226.0738
Var(β̂0) 40.3200 63.8896
Var(β̂1) 0.6613 1.0677
Var(β̂2) 0.0840 0.1310
Var(β̂11) 0.0038 0.0057
Var(β̂22) 0.000012 0.000017
Var(β̂12) 0.0002 0.000253

Cov(β̂0, β̂1) -2.3407 -3.5804
Cov(β̂0, β̂2) -1.7265 -2.7208
Cov(β̂0, β̂11) 0.0574 0.0950
Cov(β̂0, β̂22) 0.0176 0.0275
Cov(β̂0, β̂12) 0.0381 0.0563
Cov(β̂1, β̂2) 0.0440 0.0640
Cov(β̂1, β̂11) -0.0352 -0.0571
Cov(β̂1, β̂22) -0.0001 -0.0001
Cov(β̂1, β̂12) -0.0068 -0.0107
Cov(β̂2, β̂11) -0.0003 -0.0004
Cov(β̂2, β̂22) -0.0009 -0.0014
Cov(β̂2, β̂12) -0.0009 -0.0014
Cov(β̂11, β̂22) 0.000012 0.000005
Cov(β̂11, β̂12) -0.0001 0.000001
Cov(β̂22, β̂12) -0.000003 0.000001

A.6 Nonparametric Model Calculations for AIDS Incidence Data

For the data in Appendix B, a linear LWLS estimate was fit with the calculated cross-validation
bandwidth to produce the point estimates (θ̂) of the true maximizers of AIDS incidence (θ) for
Latinos and Whites in California. The cross-validation bandwidths (shown in the table below) were
multiplied by a factor of 1.25 to calculate ĝ(τ)(θ̂), which were used to estimate g(τ)(θ). These were
done using the product polynomial kernel (1− z2

1)
2(1 − z2

2)
2 with z1, z2 ∈ [−1, 1]. The degree of
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local polynomial fit in the jth direction was τj + 1 for j = 1, 2. The numbers are provided below:

Nonparametric Estimate/Calculation Latinos Whites

θ̂time 1992.25 1991.75
θ̂age 34.0 36.0

Cross-validation bandwidth, time direction = btime 1.647 1.13
Cross-validation bandwidth, age direction = bage 4.662 2.56
σ̂2, using estimate from Müller and Prewitt (1993) 70.19 147.98

Estimate of g(1,1)(θ) = ĝ(1,1)(θ̂) -1.1925 9.8392
Estimate of g(0,2)(θ) = ĝ(0,2)(θ̂) -8.0035 -17.1148
Estimate of g(2,0)(θ) = ĝ(2,0)(θ̂) 0.1033 1.7387

We now present calculations for the Latino AIDS incidence data and note that those for the White

AIDS data are similar. Using Corollary 3.3 and Lemma A.7, the expression for a 95% confidence

region for θ = [θtime , θage] under the assumption that d = 0 is given by

(A.17)

(
θtime − θ̂time

θage − θ̂age

)T
1

λ(X )σ2
H

(
θtime − θ̂time

θage − θ̂age

)
≤ χ2

2 = 5.99

where

H = γ2
n

( g(2α1)(θ)g(2α1)(θ)
V (α1,α1) + g(α1+α2)(θ)g(α1+α2)(θ)

V (α2,α2)
g(α1+α2)(θ)g(2α1)(θ)

V (α1,α1) + g(2α2)(θ)g(α1+α2)(θ)
V (α2,α2)

g(α1+α2)(θ)g(2α1)(θ)
V (α1,α1) + g(2α2)(θ)g(α1+α2)(θ)

V (α2,α2)
g(α1+α2)(θ)g(α1+α2)(θ)

V (α1,α1) + g(2α2)(θ)g(2α2)(θ)
V (α2,α2)

)

From section 4.1, λ(X ) = 400, and as discussed in section 3, we use consistent estimates for σ2, θ,

and the elements of H, all of which are shown in the above table. By Lemma A.7, V (α1, α2) = 0,

and so we need only to find V (αj , αj), j = 1, 2. Now

K(α1)
z =

∂

∂z1
(1− z2

1)
2(1− z2

2)
2

= −4z1(1− z2
1)(1− z2

2)
2

and K(α2)
z = −4(1− z2

1)
2(1− z2

2)z2 by symmetry.

This implies V (α1, α1) = V (α2, α2), and we calculate

V (α1, α1) =
∫ 1

−1

∫ 1

−1
[K(α1)(z)]2dz

= 16× [
∫ 1

−1
(z3

1 − z1)2dz1]× [
∫ 1

−1
(1− z2

2)
4dz2]

= 16× 16
105

× 256
315

≈ 1.98
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Plugging the values presented above into the expression for H and noting the bandwidth values for

the appropriate direction (all results were derived under the assumption that the bandwidth was

the same in all directions for simplicity, which is not the case for these data) then gives

H =
γn

1.98

(
(−8.0035)2 + (−1.1925)2 − 1.1925× (0.1033 - 8.0035)

−1.1925× (0.1033 - 8.0035) (0.1033)2 + (−1.1925)2

)

=

(
466× (1.647)3 × (4.662)× (33.0697) 466× (1.647)2 × (4.662)2 × (4.7581)

466× (1.647)2 × (4.662)2 × (4.7581) 466× (1.647)× (4.662)3 × (0.7236)

)

=

(
320973.545 130722.763

130722.763 56272.328

)
.

We note that for the kernel weighting scheme, z ∈ [−1, 1]× [−1, 1], and λ([−1, 1]× [−1, 1]) = 4,

and so we adjust λ(X ) from 400 to 100. Hence, λ(X )× σ̂2 = 7019. Plugging all of this information

into (A.17) yields the 95% confidence region to be

(
θtime − 1992.25

θage − 34.0

)T
1

7019

(
320973.545 130722.763

130722.763 56272.328

) (
θtime − 1992.25

θage − 34.0

)
≤ 5.99,

or

(
θtime − 1992.25

θage − 34.0

)T (
45.70 18.61

18.61 8.01

) (
θtime − 1992.25

θage − 34.0

)
≤ 5.99

The last equation is presented in section 4, where a similar calculation done for the White AIDS

incidence data is also presented.
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