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In recent years, bootstrap methods have drawn attention for their ability
to approximate the laws of “max statistics” in high-dimensional problems.
A leading example of such a statistic is the coordinatewise maximum of a
sample average of n random vectors in R

p . Existing results for this statistic
show that the bootstrap can work when n � p, and rates of approximation
(in Kolmogorov distance) have been obtained with only logarithmic depen-
dence in p. Nevertheless, one of the challenging aspects of this setting is that
established rates tend to scale like n−1/6 as a function of n.

The main purpose of this paper is to demonstrate that improvement in
rate is possible when extra model structure is available. Specifically, we show
that if the coordinatewise variances of the observations exhibit decay, then
a nearly n−1/2 rate can be achieved, independent of p. Furthermore, a sur-
prising aspect of this dimension-free rate is that it holds even when the decay
is very weak. Lastly, we provide examples showing how these ideas can be
applied to inference problems dealing with functional and multinomial data.

1. Introduction. One of the current challenges in theoretical statistics is to understand
when bootstrap methods work in high-dimensional problems. In this direction, there has been
a surge of recent interest in connection with “max statistics” such as

T = max
1≤j≤p

Sn,j ,

where Sn,j is the j th coordinate of the sum Sn = 1√
n

∑n
i=1(Xi −E[Xi]), involving i.i.d. vec-

tors X1, . . . ,Xn in R
p .

This type of statistic has been a focal point in the literature for at least two reasons. First, it
is an example of a statistic for which bootstrap methods can succeed in high dimensions under
mild assumptions, which was established in several pathbreaking works (Arlot, Blanchard
and Roquain (2010a), Arlot, Blanchard and Roquain (2010b), Chernozhukov, Chetverikov
and Kato (2013), Chernozhukov, Chetverikov and Kato (2017)). Second, the statistic T is
closely linked to several fundamental topics, such as suprema of empirical processes, non-
parametric confidence regions and multiple testing problems. Likewise, many applications
of bootstrap methods for max statistics have ensued at a brisk pace in recent years (see,
e.g., Belloni et al. (2018), Chang, Yao and Zhou (2017), Chen (2018), Chen, Genovese and
Wasserman (2015), Chernozhukov, Chetverikov and Kato (2014), Dezeure, Bühlmann and
Zhang (2017), Fan, Shao and Zhou (2018), Wasserman, Kolar and Rinaldo (2014), Zhang
and Cheng (2017)).

One of the favorable aspects of bootstrap approximation results for the distribution L(T )

is that rates have been established with only logarithmic dependence in p. For instance, the
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results in Chernozhukov, Chetverikov and Kato (2017) imply that under certain conditions,
the Kolmogorov distance dK between L(T ) and its bootstrap counterpart L(T ∗|X) satisfies
the bound

(1.1) dK
(
L(T ),L

(
T ∗|X)) ≤ c log(p)b

n1/6

with high probability, where c, b > 0 are constants not depending on n or p, and X de-
notes the matrix whose rows are X1, . . . ,Xn. (In the following, symbols such as c will be
often reused to designate a positive constant not depending on n or p, possibly with a dif-
ferent value at each occurrence.) Additional refinements of this result can be found in the
same work, with regard to the choice of metric, or choice of bootstrap method. Also, recent
progress in sharpening the exponent b has been made by Deng and Zhang (2017). However,
this mild dependence on p is offset by the n−1/6 dependence on n, which differs from the
n−1/2 dependence in the multivariate Berry–Esseen theorem when p � n.

Currently, the general problem of determining the best possible rates for Gaussian
and bootstrap approximations is largely open in the high-dimensional setting. In particu-
lar, if we let T̃ denote the counterpart of T that arises from replacing X1, . . . ,Xn with
independent Gaussian vectors X̃1, . . . , X̃n satisfying cov(Xi) = cov(X̃i), then a conjec-
ture of Chernozhukov, Chetverikov and Kato (2017) indicates that a bound of the form
dK(L(T ),L(T̃ )) ≤ cn−1/6 log(p)b is optimal under certain conditions. A related conjecture
in the setting of high-dimensional U-statistics may also be found in Chen (2018). (Further dis-
cussion of related work on Gaussian approximation is given in Appendix H.) Nevertheless,
the finite-sample performance of bootstrap methods for max statistics is often more encour-
aging than what might be expected from the n−1/6 dependence on n (see, e.g., Belloni et al.
(2018), Fan, Shao and Zhou (2018), Zhang and Cheng (2017)). This suggests that improved
rates are possible in at least some situations.

The purpose of this paper is to quantify an instance of such improvement when addi-
tional model structure is available. Specifically, we consider the case when the coordinates of
X1, . . . ,Xn have decaying variances. If we let σ 2

j = var(X1,j ) for each 1 ≤ j ≤ p, and write
σ(1) ≥ · · · ≥ σ(p), then this condition may be formalized as

(1.2) σ(j) ≤ cj−α for all j ∈ {1, . . . , p},
where α > 0 is a parameter not depending on n or p. (A complete set of assumptions, includ-
ing a weaker version of (1.2), is given in Section 2.) This type of condition arises in many
contexts, and in Section 2 we discuss examples related to principal component analysis, count
data and Fourier coefficients of functional data. Furthermore, this condition can be assessed
in practice, due to the fact that the parameters σ1, . . . , σp can be accurately estimated, even
in high dimensions (cf. Lemma D.7).

Within the setting of decaying variances, our main results show that a nearly parametric
rate can be achieved for both Gaussian and bootstrap approximation of L(T ). More precisely,
this means that for any fixed δ ∈ (0,1/2), the bound dK(L(T ),L(T̃ )) ≤ cn−1/2+δ holds, and
similarly, the event

(1.3) dK
(
L(T ),L

(
T ∗|X)) ≤ cn−1/2+δ

holds with high probability. Here, it is worth emphasizing a few basic aspects of these bounds.
First, they are nonasymptotic and do not depend on p. Second, the parameter α is allowed
to be arbitrarily small, and in this sense, the decay condition (1.2) is very weak. Third, the
result for T ∗ holds when it is constructed using the standard multiplier bootstrap procedure
(Chernozhukov, Chetverikov and Kato (2013)).
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With regard to the existing literature, it is important to clarify that our near-parametric
rate does not conflict with the conjectured optimality of the rate n−1/6 for Gaussian approx-
imation. The reason is that the n−1/6 rate has been established in settings where the values
σ1, . . . , σp are restricted from becoming too small. A basic version of such a requirement is
that

(1.4) min
1≤j≤p

σj ≥ c.

Hence, the conditions (1.2) and (1.4) are complementary. Also, it is interesting to observe
that the two conditions “intersect” in the limit α → 0+, suggesting there is a phase transition
in rates at the “boundary” corresponding to α = 0.

Another important consideration that is related to the conditions (1.2) and (1.4) is the use
of standardized variables. Namely, it is of special interest to approximate the distribution of
the statistic

T ′ = max
1≤j≤p

Sn,j /σj ,

which is equivalent to approximating L(T ) when each Xi,j is standardized to have variance
1. Given that standardization eliminates variance decay, it might seem that the rate n−1/2+δ

has no bearing on approximating L(T ′). However, it is still possible to take advantage of
variance decay, by using a basic notion that we refer to as “partial standardization.”

The idea of partial standardization is to slightly modify T ′ by using a fractional power
of each σj . Specifically, if we let τn ∈ [0,1] be a free parameter, then we can consider the
partially standardized statistic

(1.5) M = max
1≤j≤p

Sn,j /σ
τn

j ,

which interpolates between T and T ′ as τn ranges over [0,1]. This statistic has the following
significant property: If X1, . . . ,Xn satisfy the variance decay condition (1.2), and if τn is
chosen to be slightly less than 1, then our main results show that the rate n−1/2+δ holds for
bootstrap approximations of L(M). In fact, this effect occurs even when τn → 1 as n → ∞.
Further details can be found in Section 3. Also note that our main results are formulated
entirely in terms of M , which covers the statistic T as a special case.

In practice, simultaneous confidence intervals derived from approximations to L(M) are
just as easy to use as those based on L(T ′). Although there is a slight difference between the
quantiles of M and T ′ when τn < 1, the important point is that the quantiles of L(M) may
be preferred, since faster rates of bootstrap approximation are available. (See also Figure 1 in
Section 4.) In this way, the statistic M offers a simple way to blend the utility of standardized
variables with the beneficial effects of variance decay.

Outline. The remainder of the paper is organized as follows. In Section 2, we outline the
problem setting, with a complete statement of the theoretical assumptions, as well as some
motivating facts and examples. Our main results are given in Section 3, which consist of
a Gaussian approximation result for L(M) (Theorem 3.1), and a corresponding bootstrap
approximation result (Theorem 3.2). To provide a numerical illustration of our results, we
discuss a problem in functional data analysis in Section 4, where the variance decay condi-
tion naturally arises. Specifically, we show how bootstrap approximations to L(M) can be
used to derive simultaneous confidence intervals for the Fourier coefficients of a mean func-
tion. A second application to high-dimensional multinomial models is described in Section 5,
which offers both a theoretical bootstrap approximation result, as well as some numerical
results. Lastly, our conclusions are summarized in Section 6. All proofs are given in the Ap-
pendices, found in the Supplementary Material (Lopes, Lin and Müller (2020)).
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Notation. The standard basis vectors in R
p are denoted e1, . . . , ep , and the identity matrix

of size p × p is denoted Ip . For any symmetric matrix A ∈ R
p×p , the ordered eigenvalues

are denoted λ(A) = (λ1(A), . . . , λp(A)), where λmax(A) = λ1(A) ≥ · · · ≥ λp(A) = λmin(A).
The operator norm of a matrix A, denoted ‖A‖op, is the same as its largest singular value.
If v ∈ R

p is a fixed vector, and r > 0, we write ‖v‖r = (
∑p

j=1 |vj |r )1/r . In addition, the

weak-�r (quasi) norm is given by ‖v‖w�r = max1≤j≤p j1/r |v|(j), where |v|(1) ≥ · · · ≥ |v|(p)

are the sorted absolute entries of v. Likewise, the notation v(1) ≥ · · · ≥ v(p) refers to the
sorted entries. In a slight abuse of notation, we write ‖ξ‖r = E[|ξ |r ]1/r to refer to the Lr

norm of a scalar random variable ξ , with r ≥ 1. The ψ1-Orlicz norm is ‖ξ‖ψ1 = inf{t > 0 |
E[exp(|ξ |/t)] ≤ 2}. If {an} and {bn} are sequences of nonnegative real numbers, then the
relation an � bn means that there is a constant c > 0 not depending on n, and an integer
n0 ≥ 1, such that an ≤ cbn for all n ≥ n0. Also, we write an � bn if an � bn and bn � an.
Lastly, define the abbreviations an ∨ bn = max{an, bn} and an ∧ bn = min{an, bn}.

2. Setting and preliminaries. We consider a sequence of models indexed by n, with
all parameters depending on n, except for those that are stated to be fixed. In particular, the
dimension p = p(n) is regarded as a function of n, and hence, if a constant does not depend
on n, then it does not depend on p either.

ASSUMPTION 2.1 (Data-generating model).

(i) There is a vector μ = μ(n) ∈ R
p and positive semidefinite matrix 
 = 
(n) ∈R

p×p ,
such that the observations X1, . . . ,Xn ∈ R

p are generated as Xi = μ + 
1/2Zi for each
1 ≤ i ≤ n, where the random vectors Z1, . . . ,Zn ∈ R

p are i.i.d.
(ii) The random vector Z1 satisfies E[Z1] = 0 and E[Z1Z

�
1 ] = Ip , as well as

sup‖u‖2=1 ‖Z�
1 u‖ψ1 ≤ c0, for some constant c0 > 0 that does not depend on n.

Remarks. Note that no constraints are placed on the ratio p/n. Also, the subexponential
tail condition in part (ii) is similar to other tail conditions that have been used in previous
works on bootstrap methods for max statistics (Chernozhukov, Chetverikov and Kato (2013),
Deng and Zhang (2017)).

To state our next assumption, it is necessary to develop some notation. For any d ∈
{1, . . . , p}, let J (d) denote a set of indices corresponding to the d largest values among
σ1, . . . , σp , that is, {σ(1), . . . , σ(d)} = {σj | j ∈ J (d)}. In addition, let R(d) ∈ R

d×d denote
the correlation matrix of the random variables {X1,j | j ∈ J (d)}. Lastly, let a ∈ (0, 1

2) be a
constant fixed with respect to n, and define the integers �n and kn according to

�n = ⌈(
1 ∨ log(n)3) ∧ p

⌉
,(2.1)

kn = ⌈(
�n ∨ n

1
log(n)a

) ∧ p
⌉
.(2.2)

Note that both �n and kn grow slower than any fractional power of n, and always satisfy
1 ≤ �n ≤ kn ≤ p.

ASSUMPTION 2.2 (Structural assumptions).

(i) The parameters σ1, . . . , σp are positive, and there are positive constants α, c, and
c◦ ∈ (0,1), not depending on n, such that

σ(j) ≤ cj−α for all j ∈ {kn, . . . , p},(2.3)

σ(j) ≥ c◦j−α for all j ∈ {1, . . . , kn}.(2.4)
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(ii) There is a constant ε0 ∈ (0,1), not depending on n, such that

(2.5) max
i �=j

Ri,j (�n) ≤ 1 − ε0.

Also, the matrix R+(�n) with (i, j) entry given by max{Ri,j (�n),0} is positive semidefinite,
and there is a constant C > 0 not depending on n such that

(2.6)
∑

1≤i<j≤�n

R+
i,j (�n) ≤ C�n.

Remarks. Since �n, kn � n, it is possible to accurately estimate the parameters σ(1), . . . ,

σ(kn), as well as the matrix R(�n), even when p is large (cf. Lemmas D.6 and D.7). In this
sense, it is possible to empirically assess the conditions above. When considering the size
of the decay parameter α, note that if 
 is viewed as a covariance operator acting on a
Hilbert space, then the condition α > 1/2 essentially corresponds to the case of a trace-class
operator—a property that is typically assumed in functional data analysis (Hsing and Eubank
(2015)). From this perspective, the condition α > 0 is very weak, and allows the trace of 


to diverge as p → ∞.
With regard to the conditions on the correlation matrix R(�n), it is important to keep in

mind that they only apply to a small set of variables of size O(log(n)3), and the dependence
among the variables outside of J (�n) is completely unrestricted. The interpretation of (2.6)
is that it prevents excessive dependence among the coordinates with the largest variances.
Meanwhile, the condition that R+(�n) is positive semidefinite is more technical in nature,
and is only used in order to apply a specialized version of Slepian’s lemma (Lemma G.3).
Nevertheless, this condition always holds in the important case where R(�n) is nonnegative.
Perturbation arguments may also be used to obtain other examples where some entries of
R(�n) are negative.

2.1. Examples of correlation matrices. Some correlation matrices satisfying Assump-
tion 2.2(ii) are given below.

• Autoregressive: Ri,j = ρ
|i−j |
0 for any ρ0 ∈ (0,1).

• Algebraic decay: Ri,j = 1{i = j} + 1{i �= j}
4|i − j |γ for any γ ≥ 2.

• Banded: Ri,j =
(

1 − |i − j |
c0

)
+

for any c0 > 0.

• Multinomial: Ri,j = 1{i = j} −
√

πiπj

(1 − πi)(1 − πj )
1{i �= j},

where (π1, . . . , πp) is a probability vector.

By combining these types of correlation matrices with choices of (σ1, . . . , σp) that satisfy
(2.3) and (2.4), it is straightforward to construct examples of 
 that satisfy all aspects of
Assumption 2.2.

2.2. Examples of variance decay. To provide additional context for the decay condition
(2.3), we describe some general situations where it occurs.

• Principal component analysis (PCA). The broad applicability of PCA rests on the fact that
many types of data have an underlying covariance matrix with weakly sparse eigenvalues.
Roughly speaking, this means that most of the eigenvalues of 
 are small in comparison
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to the top few. Similar to the condition (2.3), this situation can be modeled with the decay
condition

(2.7) λj (
) ≤ cj−γ ,

for some parameter γ > 0 (e.g., Bunea and Xiao (2015)). Whenever this holds, it can be
shown that the variance decay condition must hold for some associated parameter α > 0,
and this is done in Proposition 2.1 below. So, in a qualitative sense, this indicates that if a
dataset is amenable to PCA, then it is also likely to fall within the scope of our setting.

Another way to see the relationship between PCA and variance decay is through the
measure of “effective rank,” defined as

(2.8) r(
) = tr(
)

‖
‖op
.

This quantity has played a key role in a substantial amount of recent work on PCA, be-
cause it offers a useful way to describe covariance matrices with an “intermediate” degree
of complexity, which may be neither very low dimensional, nor very high dimensional.
We refer to Vershynin (2012), Lounici (2014), Bunea and Xiao (2015), Reiß and Wahl
(2020), Koltchinskii and Lounici (2017a), Koltchinskii and Lounici (2017b), Koltchinskii,
Löffler and Nickl (2019+), Naumov, Spokoiny and Ulyanov (2019), and Jung, Lee and
Ahn (2018), among others. Many of these works have focused on regimes where

(2.9) r(
) = o(n),

which conforms naturally with variance decay. Indeed, within a basic setup where n � p

and ‖
‖op � 1, the condition (2.9) holds under σ(j) ≤ cj−α for any α > 0.
• Count data. Consider a multinomial model based on p cells and n trials, parameterized

by a vector of cell proportions π = (π1, . . . , πp). If the ith trial is represented as a vector
Xi ∈ R

p in the set of standard basis vectors {e1, . . . , ep}, then the marginal distributions
of Xi are binomial with σ 2

j = πj (1 − πj ). In particular, it follows that all multinomial
models satisfy the variance decay condition (2.3), because if we let σ = (σ1, . . . , σp), then
the weak-�2 norm of σ must satisfy ‖σ‖w�2 ≤ ‖σ‖2 ≤ 1, which implies

(2.10) σ(j) ≤ j−1/2

for all j ∈ {1, . . . , p}. In order to study the consequences of this further, we offer some
detailed examples in Section 5. More generally, the variance decay condition also arises
for other forms of count data. For instance, in the case of a high-dimensional distribution
with sparse Poisson marginals, the relation var(Xi,j ) = E[Xi,j ] shows that weak sparsity
in the mean vector can lead to variance decay.

• Fourier coefficients of functional data. Let Y1, . . . , Yn be an i.i.d. sample of functional
data, taking values in a separable Hilbert space H. In addition, suppose that the covari-
ance operator C = cov(Y1) is trace-class, which implies an eigenvalue decay condition of
the form (2.7). Lastly, for each i ∈ {1, . . . , n}, let Xi ∈ R

p denote the first p generalized
Fourier coefficients of Yi with respect to some fixed orthonormal basis {ψj } for H. That
is, Xi = (〈Yi,ψ1〉, . . . , 〈Yi,ψp〉).

Under the above conditions, it can be shown that no matter which basis {ψj } is chosen,
the vectors X1, . . . ,Xn always satisfy the variance decay condition. (This follows from
Proposition 2.1 below.) In Section 4, we explore some consequences of this condition
as it relates to simultaneous confidence intervals for the Fourier coefficients of the mean
function E[Y1].
To conclude this section, we state a proposition that was used in the examples above. This

basic result shows that decay among the eigenvalues λ1(
), . . . , λp(
) requires at least some
decay among σ1, . . . , σp .
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PROPOSITION 2.1. Fix two numbers s ≥ 1 and r ∈ (0, s). Then, there is a constant cr,s >

0 depending only on r and s, such that for any symmetric matrix A ∈ R
p×p , we have∥∥diag(A)

∥∥
w�s

≤ cr,s

∥∥λ(A)
∥∥
w�r

.

In particular, if A = 
, and if there is a constant c0 > 0 such that the inequality

λj (
) ≤ c0j
−1/r

holds for all 1 ≤ j ≤ p, then the inequality

σ 2
(j) ≤ c0cr,sj

−1/s

holds for all 1 ≤ j ≤ p.

The proof is given in Appendix A, and follows essentially from the Schur–Horn majoriza-
tion theorem, as well as inequalities relating ‖ · ‖r and ‖ · ‖w�r .

3. Main results. In this section, we present our main results on Gaussian approximation
and bootstrap approximation.

3.1. Gaussian approximation. Let S̃n ∼ N(0,
) and define the Gaussian counterpart of
the partially standardized statistic M (1.5) according to

(3.1) M̃ = max
1≤j≤p

S̃n,j /σ
τn

j .

Our first theorem shows that in the presence of variance decay, the distribution L(M̃) can
approximate L(M) at a nearly parametric rate in Kolmogorov distance. Recall that for any
random variables U and V , this distance is given by dK(L(U),L(V )) = supt∈R |P(U ≤ t) −
P(V ≤ t)|.

THEOREM 3.1 (Gaussian approximation). Fix any number δ ∈ (0,1/2), and sup-
pose that Assumptions 2.1 and 2.2 hold. In addition, suppose that τn ∈ [0,1) with (1 −
τn)

√
log(n) � 1. Then,

(3.2) dK
(
L(M),L(M̃)

)
� n− 1

2 +δ.

Remarks. As a basic observation, note that the result handles the ordinary max statistic
T as a special case with τn = 0. In addition, it is worth emphasizing that the rate does not
depend on the dimension p, or the variance decay parameter α, provided that it is positive.
In this sense, the result shows that even a small amount of structure can have a substantial
impact on Gaussian approximation (in relation to existing n−1/6 rates that hold when α = 0).
Lastly, the reason for imposing the lower bound on 1 − τn is that if τn quickly approaches 1
as n → ∞, then the variances var(Sn,j /σ

τn

j ) will also quickly approach 1, thus eliminating
the beneficial effect of variance decay.

3.2. Multiplier bootstrap approximation. In order to define the multiplier bootstrap
counterpart of M̃ , first define the sample covariance matrix

(3.3) 
̂n = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)�,

where X̄ = 1
n

∑n
i=1 Xi . Next, let S�

n ∼ N(0, 
̂n), and define the associated max statistic as

(3.4) M� = max
1≤j≤p

S�
n,j /σ̂

τn

j ,
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where (σ̂ 2
1 , . . . , σ̂ 2

p) = diag(
̂n). In the exceptional case when σ̂j = 0 for some j , the expres-
sion S�

n,j /σ̂j is understood to be 0. This convention is natural, because the event S�
n,j = 0

holds with probability 1, conditionally on σ̂j = 0.
Remarks. The above description of M� differs from some previous works insofar as we

have suppressed the role of “multiplier variables,” and have defined S�
n as a sample from

N(0, 
̂n). From a mathematical standpoint, this is equivalent to the multiplier formula-
tion (Chernozhukov, Chetverikov and Kato (2013)), where S�

n = 1√
n

∑n
i=1 ξ�

i (Xi − X̄) and

ξ�
1 , . . . , ξ�

n are i.i.d. N(0,1) random variables, generated independently of X.

THEOREM 3.2 (Bootstrap approximation). Fix any number δ ∈ (0,1/2), and suppose
the conditions of Theorem 3.1 hold. Then, there is a constant c > 0 not depending on n, such
that the event

(3.5) dK
(
L(M̃),L

(
M�|X)) ≤ cn− 1

2 +δ

occurs with probability at least 1 − c
n

.

Remarks. At a high level, the proofs of Theorems 3.1 and 3.2 are based on the follow-
ing observation: When the variance decay condition holds, there is a relatively small sub-
set of {1, . . . , p} that is likely to contain the maximizing index for M . In other words, if
ĵ ∈ {1, . . . , p} denotes a random index satisfying M = Sn,ĵ /σ

τn
ĵ , then the “effective range”

of ĵ is fairly small. Although this situation is quite intuitive when the decay parameter α is
large, what is more surprising is that the effect persists even for small values of α.

Once the maximizing index ĵ has been localized to a small set, it becomes possible to
use tools that are specialized to the regime where p � n. For example, Bentkus’ multivariate
Berry–Esseen theorem (Bentkus (2003)) (cf. Lemma G.1) is helpful in this regard. Another
technical aspect of the proofs worth mentioning is that they make essential use of the sharp
constants in Rosenthal’s inequality, as established in (Johnson, Schechtman and Zinn (1985))
(Lemma G.4).

4. Numerical illustration with functional data. Due to advances in technology and
data collection, functional data have become ubiquitous in the past two decades, and statisti-
cal methods for their analysis have received growing interest. General references and surveys
may be found in Ferraty and Vieu (2006), Horváth and Kokoszka (2012), Hsing and Eubank
(2015), Ramsay and Silverman (2005), Wang, Chiou and Müller (2016).

The purpose of this section is to present an illustration of how the partially standardized
statistic M and the bootstrap can be employed to do inference on functional data. More specif-
ically, we consider a one-sample test for a mean function, which proceeds by constructing
simultaneous confidence intervals (SCI) for its Fourier coefficients. With regard to our the-
oretical results, this is a natural problem for illustration, because the Fourier coefficients of
functional data typically satisfy the variance decay condition (1.2), as explained in the third
example of Section 2.2. Additional background and recent results on mean testing for func-
tional data may be found in Benko, Härdle and Kneip (2009), Cao, Yang and Todem (2012),
Choi and Reimherr (2018), Degras (2011), Horváth, Kokoszka and Reeder (2013), Zhang
et al. (2019), Zheng, Yang and Härdle (2014), as well as the references therein.

4.1. Tests for the mean function. To set the stage, let H be a separable Hilbert space
of functions, and let Y ∈ H be a random function with mean E[Y ] = μ. Given a sample
Y1, . . . , Yn of i.i.d. realizations of Y , a basic goal is to test

(4.1) H0 : μ = μ◦ versus H1 : μ �= μ◦,
where μ◦ is a fixed function in H.
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This testing problem can be naturally formulated in terms of SCI, as follows. Let {ψj }
denote any fixed orthonormal basis for H. Also, let {uj } and {u◦

j }, respectively, denote the
generalized Fourier coefficients of μ and μ◦ with respect to {ψj }, so that

μ =
∞∑

j=1

ujψj and μ◦ =
∞∑

j=1

u◦
jψj .

Then the null hypothesis is equivalent to uj = u◦
j for all j ≥ 1. To test this condition, one can

construct a confidence interval Îj for each uj , and reject the null if u◦
j /∈ Îj for at least one

j ≥ 1. In practice, due to the infinite dimensionality of H, one will choose a sufficiently large
integer p, and reject the null if u◦

j /∈ Îj for at least one j ∈ {1, . . . , p}.
Recently, a similar general strategy was pursued by Choi and Reimherr (2018), hereafter

CR, who developed a test for the problem (4.1) based on a hyperrectangular confidence region
for (u1, . . . , up), which is equivalent to constructing SCI. In the CR approach, the basis is
taken to be the eigenfunctions {ψC,j } of the covariance operator C = cov(Y ), and p is chosen
as the number of eigenfunctions ψC,1, . . . ,ψC,p required to explain a certain fraction (say
99%) of variance in the data. However, since C is unknown, the eigenfunctions must be
estimated from the available data.

When p is large, estimating the eigenfunctions ψC,1, . . . ,ψC,p is a well-known challenge
in functional data analysis. For instance, a large choice of p may be needed to explain 99% of
the variance if the sample paths of Y1, . . . , Yn are not sufficiently smooth. Another example
occurs when H1 holds but μ and μ◦ are not well separated, which may require a large choice
of p in order to distinguish (u1, . . . , up) and (u◦

1, . . . , u
◦
p). In light of these considerations,

we will pursue an alternative approach to constructing SCI that does not require estimation
of eigenfunctions.

4.2. Applying the bootstrap. Let {ψj } be any pre-specified orthonormal basis for H. For
instance, when H = L2[0,1], a natural option is the standard Fourier basis. For a sample
Y1, . . . , Yn ∈ H as considered before, define random vectors X1, . . . ,Xn in R

p according to

Xi = (〈Yi,ψ1〉, . . . , 〈Yi,ψp〉),
and note that E[X1] = (u1, . . . , up). For simplicity, we retain the previous notations associ-
ated with X1, . . . ,Xn, so that Sn,j = n−1/2 ∑n

i=1(Xi,j −uj ), and likewise for other quantities.
In addition, for any τn ∈ [0,1], let

L = min
1≤j≤p

Sn,j /σ
τn

j and M = max
1≤j≤p

Sn,j /σ
τn

j .

For a given significance level � ∈ (0,1), the �-quantiles of L and M are denoted qL(�) and
qM(�). Thus, the following event occurs with probability at least 1 − �:

(4.2)
p⋂

j=1

{qL(�/2)σ
τn

j√
n

≤ X̄j − uj ≤ qM(1 − �/2)σ
τn

j√
n

}
,

which leads to theoretical SCI for (u1, . . . , up).
We now apply the bootstrap from Section 3.2 to estimate qL(�/2) and qM(1 − �/2).

Specifically, we generate B ≥ 1 independent samples of M� as in (3.4), and then define
q̂M(1 − �/2) to be the empirical (1 − �/2)-quantile of the B samples (and similarly for
q̂L(�/2)), leading to the bootstrap SCI

(4.3) Îj =
[
X̄j − q̂M(1 − �/2)σ̂

τn

j√
n

, X̄j − q̂L(�/2)σ̂
τn

j√
n

]
for each j ∈ {1, . . . , p}.



BOOTSTRAPPING MAX STATISTICS 1223

FIG. 1. Illustration of the impact of τn on the shape of simultaneous confidence intervals (SCI). The curves
represent upper and lower endpoints of the respective SCI, where the Fourier coefficients are indexed by j . Overall,
the plot shows that the SCI change very gradually as a function of τn, and that there is a trade-off in the widths
of the intervals. Namely, as τn decreases, the intervals for the leading coefficients (small j ) become tighter, while
the intervals for the subsequent coefficients (large j ) become wider.

It remains to select the value of τn, for which we adopt the following simple rule. For
each choice of τn in a set of possible candidates, say T = {0,0.1, . . . ,0.9,1}, we construct
the associated intervals Î1, . . . , Îp as in (4.3), and then select the value τn ∈ T for which the
average width 1

p

∑p
j=1 |Îj | is the smallest, where |[a, b]| = b − a.

In Figure 1, we illustrate the influence of τn on the shape of the SCI. There are two main
points to notice: (1) The intervals change very gradually as a function of τn, which shows
that partial standardization is at most a mild adjustment of ordinary standardization. (2) The
choice of τn involves a tradeoff, which controls the “allocation of power” among the p in-
tervals. When τn is close to 1, the intervals are wider for the leading coefficients (small j ),
and narrower for the subsequent coefficients (large j ). However, as τn decreases from 1, the
widths of the intervals gradually become more uniform, and the intervals for the leading co-
efficients become narrower. Hence, if the vectors (u1, . . . , up) and (u◦

1, . . . , u
◦
p) differ in the

leading coefficients, then choosing a smaller value of τn may lead to a gain in power. One
last interesting point to mention is that in the simulations reported below, the selection rule of
“minimizing the average width” typically selected values of τn around 0.8, and hence strictly
less than 1.

4.3. Simulation settings. To study the numerical performance of the SCI described
above, we generated i.i.d. samples from a Gaussian process on [0,1], with population mean
function

μω,ρ,θ (t) = (1 + ρ) · (
exp

[−{
gω(t) + 2

}2] + exp
[−{

gω(t) − 2
}2]) + θ

indexed by parameters (ω,ρ, θ), where gω(t) := 8hω(t)− 4, and hω(t) denotes the Beta dis-
tribution function with shape parameters (2 + ω,2). This family of functions was considered
in Chen and Müller (2012). To interpret the parameters, note that ω determines the shape of
the mean function (see Figure 2), whereas ρ and θ are scale and shift parameters. In terms of
these parameters, the null hypothesis corresponds to μ = μ◦ := μ0,0,0.

The population covariance function was taken to be the Matérn function

C(s, t) = (
√

2ν|t − s|)ν
16�(ν)2ν−1 Kν

(√
2ν|t − s|),

which was previously considered in CR, with Kν being a modified Bessel function of the
second kind. We set ν = 0.1, which results in relatively rough sample paths, as illustrated in
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FIG. 2. Left: Mean functions for varying shape parameters ω with ρ = θ = 0. Middle: Mean functions for vary-
ing scale parameters ρ with ω = θ = 0. Right: Mean functions with different shift parameters θ with ω = ρ = 0.

the left panel of Figure 3. Also, the significant presence of variance decay is shown in the
right panel.

When implementing the bootstrap in Section 4.2, we used the first p = 100 functions from
the standard Fourier basis on [0,1]. (In principle, an even larger value p could have been
selected, but we chose p = 100 to limit computation time.) For comparison purposes, we
also implemented the “Rzs” version of the method proposed in CR, using the accompanying
R package fregion (Choi and Reimherr (2016)) under default settings, which typically
utilized estimates of the first p ≈ 50 eigenfunctions of C.

Results on type I error. The nominal significance level was set to 5% in all simulations. To
assess the actual type I error, we carried out 5000 simulations under the null hypothesis, for
both n = 50 and n = 200. When n = 50, the type I error was 6.7% for the bootstrap method,
and 1.6% for CR. When n = 200, the results were 5.7% for the bootstrap method, and 2.6%
for CR. So, in these cases, the bootstrap respects the nominal significance level relatively
well. In addition, our numerical results support the idea that partial standardization can be
beneficial, because in the fully standardized case where τn = 1, we observed less accurate
type I error rates of 7.0% for n = 50, and 6.4% for n = 200.

Results on power. To consider power, we varied each of the parameters ω, ρ and θ , one at a
time, while keeping the other two at their baseline value of zero. In each parameter setting, we
carried out 1000 simulations with sample size n = 50. The results are summarized in Figure 4,
showing that the bootstrap achieves relative gains in power—especially with respect to the
shape (ω) and scale (ρ) parameters. In particular, it seems that using a large number of basis
functions can help to catch small differences in these parameters (see also Figure 2).

FIG. 3. Left: A sample of the functional data Y1, . . . , Yn in the simulation study. Right: The ordered values
σ(j) =

√
var(X1,j ) are represented by dots, which are approximated by the decay profile 0.15j−0.69 (solid line).
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FIG. 4. Empirical power for the partially standardized bootstrap method (solid) and the CR method (dotted)
Left: Empirical power for varying shape parameters ω while ρ = θ = 0. Middle: Empirical power for varying
scale parameters ρ while ω = θ = 0. Right: Empirical power for varying shift parameters θ while ω = ρ = 0.

5. Examples with multinomial data. When multinomial models are used in practice,
it is not uncommon for the number of cells p to be quite large. Indeed, the challenges of
this situation have been a topic of sustained interest, and many inferential questions remain
unresolved (e.g., Balakrishnan and Wasserman (2019), Chafaï and Concordet (2009), Cressie
and Read (1984), Fienberg and Holland (1973), Hoeffding (1965), Holst (1972), Paninski
(2008), Zelterman (1987)). A recent survey is (Balakrishnan and Wasserman (2018)). As
one illustration of how our approach can be applied to such models, this section will look
at the task of constructing SCI for the cell proportions. Although this type of problem
has been studied from a variety of perspectives over the years (e.g., Chafaï and Concordet
(2009), Fitzpatrick and Scott (1987), Goodman (1965), Quesenberry and Hurst (1964), Sison
and Glaz (1995), Wang (2008)), relatively few theoretical results directly address the high-
dimensional setting—and in this respect, our example offers some progress. Lastly, it is no-
table that multinomial data are of a markedly different character than the functional data con-
sidered in Section 4, which demonstrates how our approach has a broad scope of potential
applications.

5.1. Theoretical example. Recall from Section 2.2 that we regard the observations in the
multinomial model as lying in the set of standard basis vectors {e1, . . . , ep} ⊂ R

p . In this
context, we also write π̂j = X̄j to indicate that the j th coordinate of the sample mean is an
estimate of the j th cell proportion πj . In addition, it is important to clarify that a variance
decay condition of the form (1.2) is automatically satisfied in this model (as explained in
Section 2.2), and so it is not necessary to include this as a separate assumption. Below, we
retain the definition of kn in (2.2).

ASSUMPTION 5.1 (Multinomial model).

(i) The observations X1, . . . ,Xn ∈ R
p are i.i.d., with P(X1 = ej ) = πj for each j ∈

{1, . . . , p}, where π = (π1, . . . , πp) is a probability vector that may vary with n.
(ii) There are constants α > 0 and ε0 ∈ (0,1), with neither depending on n, such that

(5.1) σ(j) ≥ ε0j
−α for all j ∈ {

1, . . . , (kn + 1) ∧ p
}
.

Remarks. A concrete set of examples satisfying the conditions of Assumption 5.1 is given
by probability vectors of the form π(j) ∝ j−η, with η > 1. Furthermore, the condition η > 1
is mild, since the inequality π(j) ≤ j−1 is satisfied by every probability vector.

Applying the bootstrap. In the high-dimensional setting, the multinomial model differs in
an essential way from the model in Section 2, because there will often be many empty cells
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(indices) j ∈ {1, . . . , p} for which σ̂j = 0. For the indices where this occurs, the usual confi-
dence intervals of the form (4.3) have zero width, and thus cannot be used. More generally,
if the number of observations in cell j is small, then it is inherently difficult to construct a
good confidence interval around πj . Consequently, we will restrict our previous SCI (4.3)
by focusing on a set of cells that contain a sufficient number of observations. For theoretical
purposes, such a set may be defined as

(5.2) Ĵn =
{
j ∈ {1, . . . , p}

∣∣∣ π̂j ≥
√

log(n)

n

}
.

Accordingly, the max statistic and its bootstrapped version are defined by taking maxima over
the indices in Ĵn, and we denote them as

M = max
j∈Ĵn

Sn,j /σ
τn

j

and

M� = max
j∈Ĵn

S�
n,j /σ̂

τn

j ,

where we arbitrarily take M and M� to be zero in the exceptional case when Ĵ is empty.
Although the presence of the random index set Ĵn complicates the distributions of M and

M�, it is a virtue of the bootstrap that this source of randomness is automatically accounted
for in the resulting inference. In addition, the following result shows that the bootstrap con-
tinues to achieve a near-parametric rate of approximation.

THEOREM 5.1. Fix any δ ∈ (0,1/2), and suppose that Assumption 5.1 holds. In addi-
tion, suppose that τn ∈ [0,1) with (1 − τn)

√
log(n) � 1. Then there is a constant c > 0 not

depending on n such that the event

(5.3) dK
(
L(M),L

(
M�|X)) ≤ cn−1/2+δ,

occurs with probability at least 1 − c
n

.

Remarks. The proof of this result shares much of the same structure as the proofs of Theo-
rems 3.1 and 3.2, but there are a few differences. First, the use of the random index set Ĵn in
the definition of M and M� entails some extra technical considerations, which are handled
with the help of Kiefer’s inequality (Lemma G.5). Second, we develop a lower bound for
λmin(
(kn)), where 
(kn) is the covariance matrix of the variables indexed by J (kn) (see
Lemma F.3). This bound may be of independent interest for problems involving multinomial
distributions, and does not seem to be well known; see also (Bénasséni (2012)) for other
related eigenvalue bounds.

5.2. Numerical example. We illustrate the bootstrap procedure in the case of the model
πj ∝ j−1, which was considered in a recent numerical study of Balakrishnan and Wasserman
(2018). Taking p = 1000 and n ∈ {500,1000}, we applied the bootstrap method to construct
95% SCI for the proportions πj corresponding to the cells with at least 5 observations. The
cutoff value of 5 is based on a guideline that is commonly recommended in textbooks, for
example, Agresti (2002), page 19, Rice (2007), page 519. Lastly, the parameter τn was chosen
in the same way as described in Section 4.2.

Based on 5000 Monte Carlo runs, the observed coverage probability was found to be
93.7% for n = 500, and 94.4% for n = 1000, demonstrating satisfactory performance. Re-
garding the parameter τn, the selection rule typically produced values close to 0.8, for both
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n = 500 and n = 1000. As a point of comparison, it is also interesting to mention the coverage
probabilities that occurred when τn was set to 1 (which eliminates all variance decay). In this
case, the coverage probabilities became less accurate, with values of 92.7% for n = 500, and
93.1% for n = 1000. Hence, this shows that taking advantage of variance decay can enhance
coverage probability.

6. Conclusions. The main conclusion to draw from our work is that a modest amount
of variance decay in a high-dimensional model can substantially improve rates of bootstrap
approximation for max statistics, which helps to reconcile some of the empirical and the-
oretical results in the literature. In particular, there are three aspects of this type of model
structure that are worth emphasizing. First, the variance decay condition (1.2) is very weak,
in the sense that the parameter α > 0 is allowed to be arbitrarily small. Second, the condition
is approximately checkable in practice, since the parameters σ1, . . . , σp can be accurately
estimated when n � p. Third, this type of structure arises naturally in a variety of contexts.

Beyond our main theoretical focus on rates of bootstrap approximation, we have also
shown that the technique of partial standardization leads to favorable numerical results.
Specifically, this was illustrated with examples involving both functional and multinomial
data, where variance decay is an inherent property that can be leveraged. Finally, we note
that these applications are by no means exhaustive, and the adaptation of the proposed ap-
proach to other types of data may provide further opportunities for future work.
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Supplement to “Bootstrapping max statistics in high dimensions: Near-parametric
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(DOI: 10.1214/19-AOS1844SUPP; .pdf). The supplement contains proofs of all theoretical
results.
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