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ESTIMATING THE ALGORITHMIC VARIANCE OF RANDOMIZED
ENSEMBLES VIA THE BOOTSTRAP1

BY MILES E. LOPES

University of California, Davis

Although the methods of bagging and random forests are some of the
most widely used prediction methods, relatively little is known about their
algorithmic convergence. In particular, there are not many theoretical guar-
antees for deciding when an ensemble is “large enough”—so that its accu-
racy is close to that of an ideal infinite ensemble. Due to the fact that bagging
and random forests are randomized algorithms, the choice of ensemble size
is closely related to the notion of “algorithmic variance” (i.e., the variance
of prediction error due only to the training algorithm). In the present work,
we propose a bootstrap method to estimate this variance for bagging, random
forests and related methods in the context of classification. To be specific,
suppose the training dataset is fixed, and let the random variable ERRt de-
note the prediction error of a randomized ensemble of size t . Working under
a “first-order model” for randomized ensembles, we prove that the centered
law of ERRt can be consistently approximated via the proposed method as
t → ∞. Meanwhile, the computational cost of the method is quite modest,
by virtue of an extrapolation technique. As a consequence, the method offers
a practical guideline for deciding when the algorithmic fluctuations of ERRt

are negligible.

1. Introduction. Random forests and bagging are some of the most widely
used prediction methods [Breiman (1996, 2001)], and over the course of the past
fifteen years, much progress has been made in analyzing their statistical perfor-
mance [Biau (2012), Biau, Devroye and Lugosi (2008), Bühlmann and Yu (2002),
Hall and Samworth (2005), Scornet, Biau and Vert (2015)]. However, from a com-
putational perspective, relatively little is understood about the algorithmic conver-
gence of these methods, and in practice, ad hoc criteria are generally used to assess
this convergence.

To clarify the idea of algorithmic convergence, recall that when bagging and
random forests are used for classification, a large collection of t randomized clas-
sifiers is trained, and then new predictions are made by taking the plurality vote
of the classifiers. If such a method is run several times on the same training data
D, the prediction error ERRt of the ensemble will vary with each run, due to the
randomized training algorithm. As the ensemble size increases (t → ∞) with D
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held fixed, the random variable ERRt typically decreases and eventually stabilizes
at a limiting value err∞ = err∞(D). In this way, an ensemble reaches algorithmic
convergence when its prediction error nearly matches that of an infinite ensemble
trained on the same data.

Meanwhile, with regard to computational cost, larger ensembles are more ex-
pensive to train, to store in memory, and to evaluate on unlabeled points. For this
reason, it is desirable to have a quantitative guarantee that an ensemble of a given
size will perform nearly as well as an infinite one. This type of guarantee also pre-
vents wasted computation, and assures the user that extra classifiers are unlikely to
yield much improvement in accuracy.

1.1. Contributions and related work. To measure algorithmic convergence,
we propose a new bootstrap method for approximating the distribution
L(

√
t(ERRt − err∞)|D) as t → ∞. Such an approximation allows the user to

decide when the algorithmic fluctuations of ERRt around err∞ are negligible. If
particular, if we refer to the algorithmic variance

σ 2
t := var(ERRt |D) = E

[
ERR2

t |D
] − (

E[ERRt |D])2
,

as the variance of ERRt due only the training algorithm, then the parameter σt

is a concrete measure of convergence that can be estimated via the bootstrap. In
addition, the computational cost of the method turns out to be quite modest, by
virtue of an extrapolation technique, as described in Section 4.

Although the bootstrap is an established approach to distributional approxima-
tion and variance estimation, our work applies the bootstrap in a relatively novel
way. Namely, the method is based on “bootstrapping an algorithm,” rather than
“bootstrapping data”—and in essence, we are applying an inferential method in
order to serve a computational purpose. The opportunities for applying this per-
spective to other randomized algorithms can also be seen in the papers of Byrd
et al. (2012), Lopes, Wang and Mahoney (2017, 2018), which deal with stochas-
tic gradient methods, as well as randomized versions of matrix multiplication and
least squares.

Bootstrap consistency. From a theoretical standpoint, our main result (Theo-
rem 3.1) shows that the proposed method consistently approximates the distribu-
tion L(

√
t(ERRt − err∞)|D) as t → ∞ under a “first-order model” for random-

ized ensembles. The proof also offers a couple of theoretical contributions related
to Hadamard differentiability and the functional delta method (van der Vaart and
Wellner (1996), Chapter 3.9). The first ingredient is a lifting operator L, which
transforms a univariate empirical c.d.f. Ft : [0,1] → [0,1] into a multivariate ana-
logue L(Ft ) : � → �, where � is a simplex. In addition to having interesting
properties in its own right, the lifting operator will allow us to represent ERRt as
a functional of an empirical process. The second ingredient is the calculation of
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this functional’s Hadamard derivative, which leads to a surprising connection with
the classical first variation formula for smooth manifolds (Simon (1983), White
(2016)).2

To briefly comment on the role of this formula in our analysis, consider the fol-
lowing informal statement of it. Let M be a smooth d-dimensional manifold con-
tained in R

d , and let {fδ}δ∈(−1,1) be a one-parameter family of diffeomorphisms
fδ : M → fδ(M) ⊂ R

d , satisfying fδ → idM as δ → 0, where idM denotes the
identity map on M. Then

(1.1)
d

dδ
vol

(
fδ(M)

)∣∣∣∣
δ=0

=
∫
M

div(Z)(θ) dθ,

where vol(·) is a volume measure, the symbol div(Z) denotes the divergence of the
vector field Z(θ) := ∂

∂δ
fδ(θ)|δ=0 and the symbol dθ is a volume element on M.

In our analysis, it is necessary to adapt this result to a situation where the maps
fδ are nonsmooth, the manifold M is a nonsmooth subset of Euclidean space
and the vector field Z(·) is a nonsmooth Gaussian process. Furthermore, applying
a version of Stokes’ theorem to the right-hand side of equation (1.1) leads to a
particular linear functional of Z(·), which turns out to be the Hadamard derivative
relevant to understanding ERRt . A more detailed explanation of this connection is
given below equation (B.1) in Appendix B.

Related work. In the setting of binary classification, a few papers analyze the
bias E[ERRt − err∞ |D], and show that it converges at the fast rate of 1/t under
various conditions (Cannings and Samworth (2017), Lopes (2016), Ng and Jor-
dan (2001)). A couple of other works study alternative measures of convergence.
For instance, the paper of Lam and Suen (1997) considers the probability that the
majority vote commits an error at a fixed test point, and the paper of Hernández-
Lobato, Martínez-Muñoz and Suárez (2013) provides an informal analysis of the
probability that an ensemble of size t disagrees with an infinite ensemble at a ran-
dom test point, but these approaches do not directly control ERRt . In addition,
some empirical studies of algorithmic convergence may be found in the papers of
Latinne, Debeir and Decaestecker (2001), Oshiro, Perez and Baranauskas (2012).

Among the references just mentioned, the ones that are most closely related to
the current paper are Lopes (2016) and Cannings and Samworth (2017). These
works derive theoretical upper bounds on var(ERRt |D) or var(ERRt,l|D), where
ERRt,l is the error rate on a particular class l (cf. Section 4). The paper of Lopes
(2016) also proposes a method to estimate the unknown parameters in such bounds.
In relation to these works, the current paper differs in two significant ways. First,
we offer an approximation to the full distribution L(ERRt − err∞ |D), and hence
provide a direct estimate of algorithmic variance, rather than a bound. Second, the

2Further examples of problems where geometric analysis plays a role in understanding the perfor-
mance of numerical algorithms may be found in the book of Bürgisser and Cucker (2013).
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method proposed here is relevant to a wider range of problems, since it can han-
dle any number of classes, whereas the analyses in Lopes (2016) and Cannings
and Samworth (2017) are specialized to the binary setting. Moreover, the theo-
retical analysis of the bootstrap approach is entirely different from the previous
techniques used in deriving variance bounds.

Outside of the setting of randomized ensemble classifiers, the papers of Arlot
and Genuer (2014), Mentch and Hooker (2016), Scornet (2016a), Sexton and
Laake (2009), Wager, Hastie and Efron (2014) look at the algorithmic fluctuations
of ensemble regression functions at a fixed test point.

1.2. Background and setup. We consider the general setting of a classifi-
cation problem with k ≥ 2 classes. The set of training data is denoted D :=
{(X1, Y1), . . . , (Xn,Yn)}, which is contained in a sample space X ×Y . The feature
space X is arbitrary, and the space of labels Y has cardinality k. An ensemble of t

classifiers is denoted by Qi : X → Y , with i = 1, . . . , t .

Randomized ensembles. The key issue in studying the algorithmic conver-
gence of bagging and random forests is randomization. In the method of bagging,
randomization is introduced by generating random sets D∗

1, . . . ,D∗
t , each of size

n, via sampling with replacement from D. For each i = 1, . . . , t , a classifier Qi is
trained on D∗

i , with the same classification method being used each time. When
each Qi is trained with a decision tree method (such as CART [Breiman et al.
(1984)]), the random forests procedure extends bagging by adding a randomized
feature selection rule (Breiman (2001)).

It is helpful to note that the classifiers in bagging and random forests can be
represented in a common way. Namely, there is a deterministic function, say g,
such that for any fixed x ∈X , each classifier Qi can be written as

(1.2) Qi(x) = g(x,D, ξi),

where ξ1, ξ2, . . . , is an i.i.d. sequence of random objects, independent of D, that
specify the “randomizing parameters” of the classifiers [cf. Breiman (2001), Defi-
nition 1.1]. For instance, in the case of bagging, the object ξi specifies the randomly
chosen points in D∗

i .
Beyond bagging and random forests, our proposed method will be generally

applicable to ensembles that can be represented in the form (1.2), such as those
in Bühlmann and Yu (2002), Dietterich (2000), Ho (1998). This representation
should be viewed abstractly, and it is not necessary for the function g or the objects
ξ1, ξ2, . . . to be explicitly constructed in practice. Some further examples include
a recent ensemble method based on random projections (Cannings and Samworth
(2017)), as well as the voting Gibbs classifier (Ng and Jordan (2001)), which is
a Bayesian ensemble method based on posterior sampling. More generally, if the
functions Q1,Q2, . . . are i.i.d. conditionally on D, then the ensemble can be rep-
resented in the form (1.2), as long as the classifiers lie in a standard Borel space



1092 M. E. LOPES

[Kallenberg (2006), Lemma 3.22]. Lastly, it is important to note that the represen-
tation (1.2) generally does not hold for classifiers generated by boosting methods
(Schapire and Freund (2012)), for which the analysis of algorithmic convergence
is quite different.

Plurality vote. For any x ∈ X , we define the ensemble’s plurality vote as the
label receiving the largest number of votes among Q1(x), . . . ,Qt(x). In the ex-
ceptional case of a tie, it will simplify technical matters to define the plurality vote
as a symbol not contained in Y , so that a tie always counts as an error. We also
use the labeling scheme, Y := {e0, . . . , ek−1} ⊂R

k−1, where e0 := 0, and el is the
lth standard basis vector for l ≥ 1. One benefit of this scheme is that the plurality
vote is determined by the average of the labels, Q̄t (x) := 1

t

∑t
i=1 Qi(x). For this

reason, we denote the plurality vote as V(Q̄t (x)).

Error rate. Let ν = L(X,Y ) denote the distribution of a test point (X,Y ) in
X ×Y , drawn independently of D and Q1, . . . ,Qt . Then, for a particular realiza-
tion of the classifiers Q1, . . . ,Qt , trained with the given set D, the prediction error
rate is defined as

(1.3) ERRt :=
∫
X×Y

1
{
V

(
Q̄t (x)

) 	= y
}
dν(x, y) = P

(
V

(
Q̄t (X)

) 	= Y | D, ξ t

)
,

where ξ t := (ξ1, . . . , ξt ). (Classwise error rates ERRt,l , with l = 0, . . . , k − 1 will
also be addressed in Section 4.1.) Here, it is crucial to note that ERRt is a random
variable, since Q̄t is a random function. Indeed, the integral above shows that ERRt

is a functional of Q̄t . Moreover, there are two sources of randomness to consider:
the algorithmic randomness arising from ξ t , and the randomness arising from the
training set D. Going forward, we will focus on the algorithmic fluctuations of
ERRt due to ξ t , and our analysis will always be conditional on D.

Algorithmic variance. At first sight, it might not be obvious how to interpret
the algorithmic fluctuations of ERRt when D is held fixed. These fluctuations are
illustrated below in Figure 1. The left panel shows how ERRt changes as deci-
sion trees are added incrementally during a single run of the random forests al-
gorithm. For the purposes of illustration, if we run the algorithm repeatedly on D
to train many ensembles, we obtain a large number of sample paths of ERRt as a
function of t , shown in the right panel. Averaging the sample paths at each value
of t produces the red curve, representing E[ERRt |D] with ξ t averaged out. Fur-
thermore, the blue envelope curves for the sample paths are obtained by plotting
E[ERRt |D] ± 3

√
var(ERRt |D) as a function of t .

Problem formulation. Recall that the value err∞ = err∞(D) represents the
ideal prediction error of an infinite ensemble trained on D. Hence, a natural way of
defining algorithmic convergence is to say that it occurs when t is large enough so
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FIG. 1. Left panel: The fluctuations of ERRt for a single run of random forests on the “nursery
data” (cf. Section 5). Right panel: The fluctuations of ERRt for 1000 runs of random forests on the
same data (i.e., 1000 different realizations of the ensemble Q1, . . . ,Qt ). For each ensemble, the value
ERRt was approximated by testing on the set of points denoted Dground, as described in Section 5.

that the condition |ERRt − err∞ | ≤ ε holds with high probability, conditionally on
D, for some user-specified tolerance ε. However, the immediate problem we face
is that it is not obvious how to check such a condition in practice.

From the right panel of Figure 1, we see that for most t , the inequality |ERRt −
err∞ | ≤ 3σt is highly likely to hold—and this observation can be formalized using
Theorem 3.1 later on. For this reason, we propose to estimate σt as a route to
measuring algorithmic convergence. It is also important to note that estimating the
quantiles of L(ERRt − err∞ |D) would serve the same purpose, but for the sake
of simplicity, we will focus on σt . In particular, there are at least two ways that an
estimate σ̂t can be used in practice:

1. Checking convergence for a given ensemble. If an ensemble of a given size
t0 has been trained, then convergence can be checked by asking whether or not the
observable condition 3σ̂t0 ≤ ε holds. Additional comments on possible choices for
ε will be given shortly.

2. Selecting t dynamically. In order to make the training process as computa-
tionally efficient as possible, it is desirable to select the smallest t needed so that
|ERRt − err∞ | ≤ ε is likely to hold. It turns out that this can be accomplished
using an extrapolation technique, due to the fact that σt tends to scale like 1/

√
t

(cf. Theorem 3.1). More specifically, if the user trains a small initial ensemble of
size t0 and computes an estimate σ̂t0 , then “future” values of σt for t � t0 can be
estimated at no additional cost with the rescaled estimate

√
t0/tσ̂t0 . In other words,

it is possible to look ahead and predict how many additional classifiers are needed
to achieve 3σt ≤ ε. Additional details are given in Section 4.2.
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Sources of difficulty in estimating σt . Having described the basic formulation
of the problem, it is important to identify what challenges are involved in esti-
mating σt . First, we must keep in mind that the parameter σt describes how ERRt

fluctuates over repeated ensembles generated from D—and so it is not obvious
that it is possible to estimate σt from the output of a single ensemble. Second,
the computational cost to estimate σt should not outweigh the cost of training the
ensemble, and consequently, the proposed method should be computationally effi-
cient. These two obstacles will be described in Sections 3.2 and 4.2, respectively.

Remarks on the choice of error rate. Instead of analyzing the random vari-
able ERRt , a natural inclination would be to consider the “unconditional” error
rate E[ERRt ] = P(V(Q̄t (X)) 	= Y)), which is likely more familiar, and reflects
averaging over both D and the randomized algorithm. Nevertheless, there are a
few reasons why the “conditional” error ERRt may be more suitable for analyzing
algorithmic convergence. First, the notion of algorithmic convergence typically de-
scribes how much computation should be applied to a given input—and in our con-
text, the given input for the training algorithm is D. Second, from an operational
standpoint, once a user has trained an ensemble on a given dataset, their actual
probability of misclassifying a future test point is ERRt , rather than E[ERRt ].

There is also a sense in which the convergence of E[ERRt ] may be misleading.
Existing theoretical results suggest that E[ERRt − err∞] converges at the fast rate
of 1/t , and in the binary case, k = 2, it can be shown that E[ERRt − err∞ |D] =
1
t
c(D) + o(1

t
), for some number c(D), under certain conditions (Cannings and

Samworth (2017), Lopes (2016)). However, in Theorem 1 of Section 3, we show
that conditionally on D, the difference ERRt −err∞ has fluctuations of order 1/

√
t .

In this sense, if the choice of t is guided only by E[ERRt ] (rather than the fluctua-
tions of ERRt ), then the user may be misled into thinking that algorithmic conver-
gence occurs much faster than it really does—and this distinction is apparent from
the red and blue curves in Figure 1.

Outline. Our proposed bootstrap method is described in Section 2, and our
main consistency result is given in Section 3. Practical considerations are dis-
cussed in Section 4, numerical experiments are given in Section 5 and conclusions
are stated in Section 6. The essential ideas of the proofs are explained in Appen-
dices A and B, while the technical arguments are given Appendices C–E. Lastly,
in Appendix F, we provide additional assessment of technical assumptions. All
Appendices are in the Supplementary Material (Lopes (2019)).

2. Method. Based on the definition of ERRt in equation (1.3), we may view
ERRt as a functional of Q̄t , denoted

ERRt = ϕ(Q̄t ).
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Algorithm 1 Bootstrap estimation of σt

For b = 1, . . . ,B:

• Sample t classifiers (Q∗
1, . . . ,Q

∗
t ) with replacement from (Q1, . . . ,Qt).

• Compute zb := ϕ̂(Q̄∗
t ).

Return: the sample standard deviation of z1, . . . , zB , denoted σ̂t .

From a statistical standpoint, the importance of this expression is that ERRt is
a functional of a sample mean, which makes it plausible that σt is amenable to
bootstrapping, provided that ϕ is sufficiently smooth.

To describe the bootstrap method, let (Q∗
1, . . . ,Q

∗
t ) denote a random sam-

ple with replacement from the trained ensemble (Q1, . . . ,Qt), and put Q̄∗
t (·) :=

1
t

∑t
i=1 Q∗

i (·). In turn, it would be natural to regard the quantity

(2.1) ERR∗
t := ϕ

(
Q̄∗

t

)
as a bootstrap sample of ERRt , but strictly speaking, this is an “idealized” bootstrap
sample, because the functional ϕ depends on the unknown test point distribution
ν = L(X,Y ). Likewise, in Section 2.1 below, we explain how each value ϕ(Q̄∗

t )

can be estimated. So, in other words, if ϕ̂ denotes an estimate of ϕ, then an estimate
of ERRt would be written as

ÊRRt := ϕ̂(Q̄t ),

and the corresponding bootstrap sample is

ÊRR
∗
t := ϕ̂

(
Q̄∗

t

)
.

Altogether, a basic version of the proposed bootstrap algorithm is summarized in
Algorithm 1.

REMARK. While the above algorithm is conceptually simple, it suppresses
most of the implementation details, and these are explained below. Also note that
in order to approximate quantiles of L(ERRt − err∞ |D), rather than σt , it is only
necessary to modify the last step, by returning the desired quantile of the centered
values z1 − z̄, . . . , zB − z̄, with z̄ = 1

B

∑B
b=1 zb.

2.1. Resampling algorithm with hold-out or “out-of-bag” points. Here, we
consider a version of Algorithm 1 where ϕ is estimated implicitly with hold-out
points, and then later on, we will explain how hold-out points can be avoided
using “out-of-bag” (OOB) points. To begin, suppose we have a hold-out set of size
m, denoted Dhold := {(X̃1, Ỹ1), . . . , (X̃m, Ỹm)}. Next, consider an array Ã of size
t × m, whose ith row ãi is given by the predicted labels of Qi on the hold-out
points. That is,

(2.2) ãi := [
Qi(X̃1), . . . ,Qi(X̃m)

]
,
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Algorithm 2 Bootstrap estimation of σt with hold-out points
For b = 1, . . . ,B:

• Draw a t × m array Ã∗ whose rows (ã∗
1, . . . , ã∗

t ) are sampled with replacement
from (ã1, . . . , ãt ).

• Compute zb := ÊRR(Ã∗).

Return: the sample standard deviation of z1, . . . , zB , denoted σ̂t .

and

(2.3) Ã :=
⎡⎢⎣−ã1−

...

−ãt−

⎤⎥⎦ .

The estimated error rate is easily computed as a function of this array, that is,
ÊRRt = ÊRRt (Ã). To spell out the details, let Ãj = (Q1(X̃j ), . . . ,Qt(X̃j )) denote
the j th column of Ã, and with a slight abuse of our earlier notation, let V(Ãj ) de-
note the plurality vote of the labels in Ãj . Then the estimated error rate is obtained
from simple columnwise operations on Ã,

(2.4) ÊRRt (Ã) := 1

m

m∑
j=1

1
{
V(Ãj ) 	= Ỹj

}
.

In other words, ÊRRt (Ã) is just the proportion of columns of Ã for which plurality
vote is incorrect. (Note that equation (2.4) is where ϕ is implicitly estimated.)
Finally, since there is a one-to-one correspondence between the rows ãi and the
classifiers Qi , the proposed method is equivalent to resampling the rows ãi , as
given in Algorithm 2.

Extension to OOB points. Since the use of a hold-out set is often undesirable in
practice, we instead consider OOB points—which are a special feature of bagging
and random forests. To briefly review this notion, recall that each classifier Qi is
trained on a set of n points D∗

i obtained by sampling with replacement from D.
Consequently, each set D∗

i excludes approximately (1− 1
n
)n ≈ 37% of the points in

D, and these excluded points may be used as test points for the particular classifier
Qi . If a point Xj is excluded from D∗

i , then we say “the point Xj is OOB for
the classifer Qi ,” and we write i ∈ OOB(Xj ), where the set OOB(Xj ) ⊂ {1, . . . , t}
indexes the classifiers for which Xj is OOB.

In this notation, the error estimate ÊRRt (Ã) in Algorithm 2 can be given an
analogous definition in terms of OOB points. Define a new t ×n array A whose ith
row is given by

ai := [
Qi(X1), . . . ,Qi(Xn)

]
.
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Next, letting Aj be the j th column of A, define VO(Aj ) to be the plurality vote
of the set of labels {Qi(Xj ) | i ∈ OOB(Xj )}. (If this set of labels is empty, then
we treat this case as a tie, but this is unimportant, since it occurs with probability
[1 − (1 − 1

n
)n]t ≈ (0.63)t .) So, by analogy with ÊRRt (Ã), we define

(2.5) ÊRRt,O(A) := 1

n

n∑
j=1

1
{
VO(Aj ) 	= Yj

}
.

Hence, the OOB version of Algorithm 2 may be implemented by simply inter-
changing Ã and A, as well as ÊRRt (Ã

∗) and ÊRRt,O(A∗). The essential point to
notice is that the sum in equation (2.5) is now over the training points in D, rather
than over the hold-out set Dhold, as in equation (2.4).

3. Main result. Our main theoretical goal is to prove that the bootstrap yields
a consistent approximation of L(

√
t(ERRt − err∞)|D) as t becomes large. Toward

this goal, we will rely on two simplifications that are customary in analyses of
bootstrap and ensemble methods. First, we will exclude the Monte Carlo error
arising from the finite number of B bootstrap replicates, as well as the error arising
from the estimation of ERRt . For this reason, our results do not formally require
the training or hold-out points to be i.i.d. copies of the test point (X,Y )—but from
a practical standpoint, it is natural to expect that this type of condition should hold
in order for Algorithm 2 (or its OOB version) to work well.

Second, we will analyze a simplified type of ensemble, which we will refer to
as a first-order model. This type of approach has been useful in gaining theoretical
insights into the behavior of complex ensemble methods in a variety of previous
works [Arlot and Genuer (2014), Biau (2012), Biau, Devroye and Lugosi (2008),
Genuer (2012), Lin and Jeon (2006), Scornet (2016a, 2016b)]. In our context, the
value of this simplification is that it neatly packages the complexity of the base
classifiers, and clarifies the relationship between t and quality of the bootstrap ap-
proximation. Also, even with such simplifications, the theoretical problem of prov-
ing bootstrap consistency still leads to considerable technical challenges. Lastly, it
is important to clarify that the first-order model is introduced only for theoretical
analysis, and our proposed method does not rely on this model.

3.1. A first-order model for randomized ensembles. Any randomized clas-
sifier Q1 : X → {e0, . . . , ek−1} may be viewed as a stochastic process indexed
by X . From this viewpoint, we say that another randomized classifier T1 : X →
{e0, . . . , ek−1} is a first-order model for Q1 if it has the same marginal distributions
as Q1, conditionally on D, which means

(3.1) L
(
Q1(x)|D) = L

(
T1(x)|D)

for all x ∈ X .

Since Q1(x) takes values in the finite set of binary vectors {e0, . . . , ek−1}, the
condition (3.1) is equivalent to

(3.2) E
[
Q1(x)|D] = E

[
T1(x)|D]

for all x ∈ X ,
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where the expectation is only over the algorithmic randomness in Q1 and T1. A no-
table consequence of this matching condition is that the ensembles associated with
Q1 and T1 have the same error rates on average. Indeed, if we let ERR′

t be the error
rate associated with an ensemble of t independent copies of T1, then it turns out
that

E[ERRt |D] = E
[
ERR′

t |D
]
,(3.3)

for all t ≥ 1, where ERRt is the error rate for Q1, . . . ,Qt , as before. (A short proof
is given in Appendix E.) In this sense, a first-order model T1 is a meaningful proxy
for Q1 with regard to statistical performance—even though the internal mecha-
nisms of T1 may be simpler.

3.1.1. Constructing a first-order model. Having stated some basic properties
that are satisfied by any first-order model, we now construct a particular version
that is amenable to analysis. Interestingly, it is possible to start with an arbitrary
random classifier Q1 : X → {e0, . . . , ek−1}, and construct an associated T1 in a
relatively explicit way.

To do this, let x ∈X be fixed, and consider the function

(3.4) ϑ(x) := E
[
Q1(x)|D]

,

which takes values in the “full-dimensional” simplex � ⊂R
k−1, defined by

� := {
θ ∈ [0,1]k−1 | θ1 + · · · + θk−1 ≤ 1

}
.

For any fixed θ ∈ �, there is an associated partition of the unit interval into subin-
tervals

I0(θ) ∪ · · · ∪ Ik−1(θ) = [0,1],
such that the width of interval Il(θ) is equal to θl for l ≥ 1. Namely, we put
I1(θ) := [0, θ1], and for l = 2, . . . , k − 1,

Il(θ) := (
(θ1 + · · · + θl−1), (θ1 + · · · + θl)

]
.

Lastly, for I0, we put

I0(θ) :=
(

k−1∑
l=1

θl,1

]
.

Now, if we let x ∈ X be fixed, and let U1 ∼ Uniform[0,1], then we define T1(x) ∈
{e0, . . . , ek−1} to have its lth coordinate equal to the following indicator variable:[

T1(x)
]
l := 1

{
U1 ∈ Il

(
ϑ(x)

)}
,

where l = 1, . . . , k − 1. It is simple to check that the first-order matching condition
(3.2) holds, and so T1 is indeed a first-order model of Q1. Furthermore, given that
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T1 is defined in terms of a single random variable U1 ∼ Uniform[0,1], we obtain
a corresponding “first-order ensemble” T1, . . . , Tt via an i.i.d. sample of uniform
variables U1, . . . ,Ut , which are independent of D. (The lth coordinate of the ith
classifier Ti is given by [Ti(x)]l = 1{Ui ∈ Il(ϑ(x))}.) Hence, with regard to the
representation Qi(x) = g(x,D, ξi) in equation (1.2), we may make the identifica-
tion

ξi = Ui,

when the first-order model holds with Qi = Ti .

REMARK. To mention a couple of clarifications, the variables U1, . . . ,Ut are
only used for the construction of a first-order model, and they play no role in the
proposed method. Also, even though the “randomizing parameters” U1, . . . ,Ut are
independent of D, the classifiers T1, . . . , Tt still depend on D through the function
ϑ(x) = E[Q1(x)|D].

3.1.1.1. Interpretation of first-order model. To understand the statistical mean-
ing of the first-order model, it is instructive to consider the simplest case of binary
classification, k = 2. In this case, T1(x) is a Bernoulli random variable, where
T1(x) = 1{U1 ≤ ϑ(x)}. Since Q̄t (x) → ϑ(x) almost surely as t → ∞ (condition-
ally on D), the majority vote of an infinite ensemble has a similar form, that is,
1{1

2 ≤ ϑ(x)}. Hence, the classifiers {Ti} can be viewed as “random perturbations”
of the asymptotic majority vote arising from {Qi}. Furthermore, if we view the
number ϑ(x) as score to be compared with a threshold, then the variable Ui plays
the role of a random threshold whose expected value is 1

2 . Lastly, even though
the formula T1(x) = 1{U1 ≤ ϑ(x)} might seem to yield a simplistic classifier, the
complexity of T1 is actually wrapped up in the function ϑ . Indeed, the matching
condition (3.2) allows for the function ϑ to be arbitrary.

3.2. Bootstrap consistency. We now state our main result, which asserts that
the bootstrap “works” under the first-order model. To give meaning to bootstrap
consistency, we first review the notion of conditional weak convergence.

Conditional weak convergence. Let λ0 be a probability distribution on R, and
let {λξ t

}t≥1 be a sequence of probability distributions on R that depend on the
randomizing parameters ξ t = (ξ1, . . . , ξt ). Also, let dBL be the bounded Lipschitz
metric for distributions on R (van der Vaart and Wellner (1996), Section 1.12)
and let Pξ be the joint distribution of (ξ1, ξ2, . . . ). Then, as t → ∞, we say that

λξ t

w−−→ λ0 in Pξ -probability if the sequence {dBL(λξ t
, λ0)}t≥1 converges to 0 in

Pξ -probability.
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REMARK. If a test point X is drawn from class Y = el , then we denote the
distribution of the random vector ϑ(X), conditionally on D, as

μl := L
(
ϑ(X)|D, Y = el

)
,

which is a distribution on the simplex � ⊂ R
k−1. Since this distribution plays

an important role in our analysis, it is worth noting that the properties of μl are
not affected by the assumption of a first-order model, since ϑ(x) = E[T1(x)|D] =
E[Q1(x)|D] for all x ∈ X . We will also assume that the measures μl satisfy the
following extra regularity condition.

ASSUMPTION 1. For the given set D, and each l = 0, . . . , k − 1, the distribu-
tion μl has a density fl : � → [0,∞) with respect to Lebesgue measure on �, and
fl is continuous on �. Also, if �◦ denotes the interior of �, then for each l, the
density fl is C1 on �◦, and ‖∇fl‖2 is bounded on �◦.

To interpret this assumption, consider a situation where the classwise test point
distributions L(X|Y = el) have smooth densities on X ⊂ R

p with respect to
Lebesgue measure. In this case, the density fl will exist as long as ϑ is suffi-
ciently smooth (cf. Appendix F, Proposition F.1). Still, Assumption 1 might seem
unrealistic in the context of random forests, because ϑ is obtained by averaging
over all decision trees that can be generated from D, and strictly speaking, this is
a finite average of nonsmooth functions. However, due to the bagging mechanism
in random forests, the space of trees that can be generated from D is very large,
and consequently, the function ϑ represents a very fine-grained average. Indeed,
the idea that bagging is actually a “smoothing operation” on nonsmooth functions
has received growing attention over the years (Bühlmann and Yu (2002), Buja and
Stuetzle (2000), Buja and Stuetzle (2006), Efron (2014)), and the recent paper
of Efron (2014) states that bagging is “also known as bootstrap smoothing.” In
Appendix F, we provide additional assessment of Assumption 1 in terms of both
theoretical and empirical examples.

THEOREM 3.1 (Bootstrap consistency). Suppose that the first-order model
Qi = Ti holds for all i ≥ 1, and that Assumption 1 holds. Then, for the given
set D, there are numbers err∞ = err∞(D) and σ = σ(D) such that as t → ∞,

(3.5) L
(√

t(Errt − err∞)|D) w−−→ N
(
0, σ 2)

,

and furthermore,

L
(√

t
(
Err∗t − Errt

)|D, ξ t

) w−−→ N
(
0, σ 2)

in Pξ -probability.
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REMARKS. In a nutshell, the proof of Theorem 3.1 is composed of three
pieces: showing that ERRt can be represented as a functional of an empiri-
cal process (Appendix A.1), establishing the smoothness of this functional (Ap-
pendix A.2) and employing the functional delta method (Appendix A.3). With re-
gard to theoretical techniques, there are two novel aspects of the proof. The prob-
lem of deriving this functional is solved by introducing a certain lifting operator,
while the problem of showing smoothness is based on a nonsmooth instance of
the first-variation formula, as well as some special properties of Bernstein polyno-
mials. Lastly, it is worth mentioning that the core technical result of the paper is
Theorem A.1.

To mention some consequences of Theorem 3.1, the fact that the limiting dis-
tribution of L(ERRt − err∞ |D) has mean 0 shows that the fluctuations of ERRt

have more influence on algorithmic convergence than the bias E[ERRt − err∞ |D]
(as illustrated in Figure 1). Second, the limiting distribution motivates a conver-
gence criterion of the form 3σt ≤ ε, since asymptotic normality it indicates that
the event |ERRt − err∞ | ≤ 3σt should occur with high probability when t is large,
and again, this is apparent in Figure 1. Lastly, the theorem implies that the quantiles
of L(ERRt −err∞ |D) agree asymptotically with their bootstrap counterparts. This
is of interest, because quantiles allow the user to specify a bound on ERRt − err∞
that holds with a tunable probability. Quantiles also provide an alternative route
to estimating algorithmic variance, because if r∗

t denotes the interquartile range of

L(ERR∗
t − ERRt |D, ξ t ), then the theorem implies

√
t

c
r∗
t −→ σ in Pξ -probability,

where c = 
−1(3/4) − 
−1(1/4).

4. Practical considerations. In this section, we discuss some considerations
that arise when the proposed method is used in practice, such as the choice of error
rate, the computational cost and the choice of a stopping criterion for algorithmic
convergence.

4.1. Extension to classwise error rates. In some applications, classwise er-
ror rates may be of greater interest than the total error rate ERRt . For any
l = 0, . . . , k − 1, let νl = L(X|Y = el) denote the distribution of the test point
X given that it is drawn from class l. Then the error rate on class l is defined as

(4.1)
ERRt,l :=

∫
X

1
{
V

(
Q̄t (x)

) 	= el

}
dνl(x)

= P
(
V

(
Q̄t (X)

) 	= el | D, ξ t , Y = el

)
,

and the corresponding algorithmic variance is

σ 2
t,l := var(ERRt,l|D).

In order to estimate σt,l , Algorithm 2 can be easily adapted using either hold-
out or OOB points from a particular class. Our theoretical analysis also extends
immediately to the estimation of σt,l (cf. Section A.1).
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4.2. Computational cost and extrapolation. A basic observation about Algo-
rithm 2 is that it only relies on the array of predicted labels Ã (or alternatively A).
Consequently, the algorithm does not require any retraining of the classifiers. Also,
with regard to computing the arrays Ã or A, at least one of these is typically com-
puted anyway when evaluating an ensemble’s performance with hold-out or OOB

points—and so the cost of obtaining Ã or A will typically not be an added ex-
pense of Algorithm 2. Third, the algorithm can be parallelized, since the boot-
strap replicates can be computed independently. Lastly, the cost of the algorithm is
dimension-free with respect to the feature space X , since all operations are on the
arrays Ã or A, whose sizes do not depend on the number of features.

To measure the cost of Algorithm 2 in terms of floating point operations, it is
simple to check that at each iteration b = 1, . . . ,B , the cost of evaluating ÊRRt (Ã

∗)
is of order t ·m, since Ã has m columns, and each evaluation of the plurality voting
function has cost O(t). Hence, if the arrays Ã or A are viewed as given, and if
m = O(n), then the cost of Algorithm 2 is O(B · t · n), for either the hold-out
or OOB versions. Below, we describe how this cost can be reduced using a basic
form of extrapolation (Bickel and Yahav (1988), Brezinski and Zaglia (2013), Sidi
(2003)).

Saving on computation with extrapolation. To explain the technique of extrap-
olation, the first step produces an inexpensive estimate σ̂t0 by applying Algorithm 2
to a small initial ensemble of size t0. The second step then rescales σ̂t0 so that it
approximates σt for t � t0. This rescaling relies on Theorem 3.1, which leads to
the approximation, σt ≈ σ√

t
. Consequently, we define the extrapolated estimate of

σt as

(4.2) σ̂t,extrap :=
√

t0√
t

· σ̂t0 .

In turn, if the user desires 3σt ≤ ε for some ε ∈ (0,1), then t should be chosen so
that

(4.3) 3σ̂t,extrap ≤ ε,

which is equivalent to t ≥ (
3
√

t0
ε

· σ̂t0)
2.

In addition to applying Algorithm 2 to a smaller ensemble, a second computa-
tional benefit is that extrapolation allows the user to “look ahead” and dynamically
determine how much extra computation is needed so that σt is within a desired
range. In Section 5, some examples are given showing that σ1000 can be estimated
well via extrapolation when t0 = 200.

Comparison with the cost of training a random forest. Given that one of the
main uses of Algorithm 2 is to control the size of a random forest, one would
hope that the cost of Algorithm 2 is less than or similar to the cost of training a
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single ensemble. In order to simplify this comparison, suppose that each tree in the
ensemble is grown so that all nodes are split into exactly 2 child nodes (except for
the leaves), and that all trees are grown to a common depth d ≥ 2. Furthermore,
suppose that X ⊂ R

p , and that random forests uses the default rule of randomly
selecting from �√p� features during each node split. Under these conditions, it is
known that the cost of training a random forest with t trees via CART is at least of
order t ·√p ·d ·n (Breiman et al. (1984), page 166). Additional background on the
details of random forests and decision trees may be found in the book of Hastie,
Tibshirani and Friedman (2001).

Based on the reasoning just given, the cost of running Algorithm 2 does not
exceed the cost of training t trees, provided that

B =O
(

t

t0
· √p · d

)
,

where the factor t
t0

arises from the extrapolation speedup described earlier. More-
over, with regard to the selection of B , our numerical examples in Section 5 show
that the modest choice B = 50 allows Algorithm 2 to perform well on a variety of
datasets.

The choice of the threshold ε. When using a criterion such as (4.3) in prac-
tice, the choice of the threshold ε will typically be unique to the user’s goals. For
instance, if the user desires that ERRt is within 0.5% of err∞, then the choice
ε = 0.005 would be appropriate. Another option is to choose ε from a relative
standpoint, depending on the scale of the error. If the error is high (say E[ERRt |D]
is 40%), then it may not be worth paying a large computational price to ensure that
3σt is less than 0.5%. Conversely, if E[ERRt |D] is 2%, then it may be worthwhile
to train a very large ensemble so that σt is a fraction of 2%. In either of these cases,
the size of σt could be controlled in a relative sense by selecting t when σ̂t ≤ ηm̂t ,
where m̂t is an estimate of E[ERRt |D] obtained from a hold-out set, and η ∈ (0,1)

is a user-specified constant that measures the balance between computational cost
and accuracy. But regardless of the user’s preference for ε, the more basic point
to keep in mind is that the proposed method makes it possible for the user to have
direct control over the relationship between t and σt , and this type of control has
not previously been available.

5. Numerical experiments. To illustrate our proposed method, we describe
experiments in which the random forests method is applied to natural and synthetic
datasets (6 in total). More specifically, we consider the task of estimating the pa-
rameter 3σt = 3

√
var(ERRt |D), as well as 3σt,l = 3

√
var(ERRt,l|D). Overall, the

main purpose of the experiments is to show that the bootstrap can indeed produce
accurate estimates of these parameters. A second purpose is to demonstrate the
value of the extrapolation technique from Section 4.2.
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5.1. Design of experiments. Each of the 6 datasets were partitioned in the
following way. First, each dataset was evenly split into a training set D and
a “ground truth” set Dground, with nearly matching class proportions in D and
Dground. (The reason that a substantial portion of data was set aside for Dground
was to ensure that ground truth values of σt and σt,l could be approximated
using this set.) Next, a smaller set Dhold ⊂ Dground with cardinality satisfying
|Dhold|/(|Dhold| + |D|) ≈ 1/6 was used as the hold-out set for implementing Al-
gorithm 2. As before, the class proportions in Dhold and D were nearly matching.
The smaller size of Dhold was chosen to illustrate the performance of the method
when hold-out points are limited.

Ground truth values. After preparing D, Dground, and Dhold, a collection of
1000 ensembles was trained on D by repeatedly running the random forests
method. Each ensemble contained a total of 1000 trees, trained under default set-
tings from the package randomForest (Liaw and Wiener (2002)). Also, we
tested each ensemble on Dground to approximate a corresponding sample path of
ERRt (like the ones shown in Figure 1). Next, in order to obtain “ground truth”
values for σt with t = 1, . . . ,1000, we used the sample standard deviation of the
1000 sample paths at each t . (Ground truth values for each σt,l were obtained
analogously.)

Extrapolated estimates. With regard to our methodology, we applied the hold-
out and OOB versions of Algorithm 2 to each of the ensembles—yielding 1000
realizations of each type of estimate of σt . In each case, the number of bootstrap
replicates was set to B = 50, and we applied the extrapolation rule, starting from
t0 = 200. If we let σ̂200,H and σ̂200,O denote the initial hold-out and OOB estimators,
then the corresponding extrapolated estimators for t ≥ 200 are given by

(5.1) σ̂t,H,extrap :=
√

200√
t

σ̂200,H and σ̂t,O,extrap :=
√

200√
t

σ̂200,O.

Next, as a benchmark, we considered an enhanced version of the hold-out estima-
tor, for which the entire ground truth set Dground was used in place of Dhold. In
other words, this benchmark reflects a situation where a much larger hold-out set
is available, and it is referred to as the “ground estimate” in the plots. Its value
based on t0 = 200 is denoted σ̂200,G, and for t ≥ 200, we use

(5.2) σ̂t,G,extrap :=
√

200√
t

σ̂200,G

to refer to its extrapolated version. Lastly, classwise versions of all extrapolated
estimators were computed in an analogous way.

5.2. Description of datasets. The following datasets were each partitioned
into D, Dhold and Dground, as described above.
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Census income data. A set of census records for 48,842 people were collected
with 14 socioeconomic features (continuous and discrete) (Lichman (2013)). Each
record was labeled as 0 or 1, corresponding to low or high income. The proportions
of the classes are approximately (0.76,0.24). As a preprocessing step, we excluded
three features corresponding to work-class, occupation and native country, due to
a high proportion of missing values.

Connect-4 data. The observations represent 67,557 board positions in the two-
person game “connect-4” [Lichman (2013)]. For each position, a list of 42 categor-
ical features are available, and each position is labeled as a draw l = 0, loss l = 1
or win l = 2 for the first player, with the class proportions being approximately
(0.10,0.25,0.65).

Nursery data. This dataset was prepared from a set of 12,960 applications for
admission to a nursery school (Lichman (2013)). Each application was associated
with a list of 8 (categorical) socioeconomic features. Originally, each application
was labeled as one of five classes, but in order to achieve reasonable label balance,
the last three categories were combined. This led to approximate class proportions
(1/3,1/3,1/3).

Online news data. A collection of 39,797 news articles from the website
mashable.com were associated with 60 features (continuous and discrete). Each
article was labeled based on the number of times it was shared: fewer than 1000
shares (l = 0), between 1000 and 5000 shares (l = 1), and greater than 5000 shares
(l = 2), with approximate class proportions (0.28,0.59,0.13).

Synthetic continuous data. Two classes of data points in R
100, each of size

10,000, were obtained by drawing samples from the multivariate normal distri-
butions N(μ0,�) and N(μ1,�) with a common covariance matrix �. The first
mean vector was chosen to be μ0 = 0 ∈ R

100, and the second mean vector was
constructed to be a sparse vector in the following way. Specifically, we sampled
10 numbers (i1, . . . , i10) without replacement from {1, . . . ,100}, and the coordi-
nates of μ1 indexed by (i1, . . . , i10) were set to the value .05 (with all other co-
ordinates were set to 0). Letting U�U� denote the spectral decomposition of �,
we selected the matrix of eigenvectors U by sampling from the uniform (Haar)
distribution on 100 × 100 orthogonal matrices. The eigenvalues were chosen as
� = diag( 1

12 , 1
22 , . . . , 1

1002 ).

Synthetic discrete data. Two classes of data points in R
100, each of size

10,000, were obtained by drawing samples from the discrete distributions
Multinomial(N0,p0) and Multinomial(N1,p1), where Nl refers to the number
of balls in 100 cells, and the cell probabilities are specified by pl ∈ R

100. Specifi-
cally, we set N0 = N1 = 100, and p0 = ( 1

100 , . . . , 1
100). The vector p1 was obtained

http://mashable.com
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by perturbing p0 and then normalizing it. Namely, letting z ∈ R
100 be a vector of

i.i.d. N(0,1) variables, we defined the vector p1 = |p0 + 1
300z|/‖p0 + 1

300z‖1,
where | · | refers to coordinatewise absolute value.

5.3. Numerical results.

Interpreting the plots. For each dataset, we plot the ground truth value 3σt as
a function of t = 1, . . . ,1000, where the y-axis is expressed in units of %, so that
a value 3σt = 0.01 is marked as 1%. Alongside each curve for 3σt , we plot the
averages of 3σ̂t,O,extrap (green), 3σ̂t,H,extrap (purple) and 3σ̂t,G,extrap (orange) over
their 1000 realizations, with error bars indicating the spread between the 10th and
90th percentiles of the estimates. Here, the error bars are only given to illustrate
the variance of the estimates, conditionally on D, and they are not proposed as
confidence intervals for σt . (Indeed, our main focus is on the fluctuations of ERRt ,
rather than the fluctuations of variance estimates.) Lastly, we plot results for the
classwise parameters σt,l in the same manner, but in order to keep the number of
plots manageable, we only display the class l with the highest value of 3σt,l at
t = 1000. This is reflected in the plots, since the values of 3σt,l for the chosen
class l are generally larger than 3σt .

Walking through an example (Figure 2). To explain the plots from the user’s
perspective, suppose the user trains an initial ensemble of t0 = 200 classifiers with
the ‘census income’ data. (The following considerations will apply in the same way
to the other datasets in Figures 3–7.) At this stage, the user may compute either of
the estimators σ̂200,O or σ̂200,H. In turn, the user may follow the definitions (5.1) to
plot the extrapolated estimators for all t ≥ 200 at no additional cost. These curves

FIG. 2. Results for census income data.
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FIG. 3. Results for connect-4 data.

will look like the purple or green curves in the left panel of Figure 2, up to a small
amount of variation indicated by the error bars.

If the user wants to select t so that 3σt is at most, say 0.5%, then the purple or
green curves in the left panel of Figure 2 would tell the user that 200 classifiers
are already sufficient, and no extra classifiers are needed (which is correct in this
particular example). Alternatively, if the user happens to be interested in the class-
wise error rate for l = 1, and if the user wants 3σt,1 to be at most 0.5%, then the
curve for the OOB estimator accurately predicts that approximately 600 total (i.e.,
400 extra) classifiers are needed. By contrast, the hold-out method is conservative,
and indicates that approximately 1000 total (i.e., 800 extra) classifiers should be

FIG. 4. Results for online news data.
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FIG. 5. Results for nursery data.

trained. So, in other words, the hold-out estimator would still provide the user with
the desired outcome, but at a higher computational cost.

Comments on numerical results. Considering all of the datasets collectively,
the plots show that the extrapolated OOB and ground estimators are generally quite
accurate. Meanwhile, the hold-out estimator tends to be conservative, due to an
upward bias. Consequently, the OOB method should be viewed as preferable, since
it is both more accurate, and does not require data to be held out. Nevertheless,
when considering the hold-out estimator, it is worth noting that the effect of the
bias actually diminishes with extrapolation, and even if the initial value 3σ̂t0,H,extrap
has noticeable bias at t0 = 200, it is possible for the extrapolated value 3σ̂t,H,extrap
to have relatively small bias at t = 1000.

FIG. 6. Results for synthetic continuous data.
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FIG. 7. Results for synthetic discrete data.

To understand where the bias of the hold-out estimator comes from, imagine
that two ensembles have been trained on the same data, and suppose their accu-
racy is compared on a small hold-out set. In this situation, it is possible for their
observed error rates on the hold-out set to noticeably differ—even if the true error
rates are very close. For this reason, the small size of Dhold leads to greater vari-
ation among the estimated values ÊRR(Ã∗) generated in the hold-out version of
Algorithm 2, which leads to an inflated estimate of σt . By contrast, the ground es-
timator suffers less from this bias because it relies on the much larger ground truth
set Dground in place of Dhold. Similarly, the OOB estimate of σt is less susceptible
to this bias, because it will typically use every point in the larger training set D as
an “effective test point”, preventing excess variation among the values ÊRR(A∗).
(Even for small choices of t0, all training points are likely to be an OOB point for
at least one classifier.)

One last point to mention is that many of the datasets have discrete features,
which may violate the theoretical conditions in Assumption 1. Nevertheless, the
presence or absence of discrete features does not seem to substantially affect on
the performance of the estimators. So, to this extent, the bootstrap does not seem
to depend too heavily on Assumption 1. (See Appendix F.2 for further empirical
assessment of that assumption.)

6. Conclusion. We have studied the notion of algorithmic variance σ 2
t =

var(ERRt |D) as a criterion for deciding when a randomized ensemble will per-
form nearly as well as an infinite one (trained on the same data). To estimate this
parameter, we have developed a new bootstrap method, which allows the user to
directly measure the convergence of randomized ensembles with a guarantee that
has not previously been available.

With regard to practical considerations, we have shown that our bootstrap
method can be enhanced in two ways. First, the use of a hold-out set can be avoided
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with the OOB version of Algorithm 2, and our numerical results show that the OOB

version is preferable when hold-out points are scarce. Second, the extrapolation
technique substantially reduces the cost of bootstrapping. Furthermore, we have
analyzed the cost of the method in terms of floating point operations to show that it
compares favorably with the cost of training a single ensemble via random forests.

From a theoretical standpoint, we have analyzed the proposed method within
the framework of a first-order model for randomized ensembles. In particular, for
a generic ensemble whose classifiers are conditionally i.i.d. given D, there is a
corresponding first-order model that matches the generic ensemble with respect to
its average error rate E[ERRt |D]. Under this setup, our main result shows that the
proposed method consistently approximates L(

√
t(ERRt − err∞)|D) as t → ∞.

Some extensions of this result could include generalizations to other models of
randomized ensembles [e.g., along the lines of Biau (2012), Biau, Devroye and
Lugosi (2008), Scornet (2016b), Scornet, Biau and Vert (2015)], as well as corre-
sponding results in the context of regression ensembles, which we hope to pursue
in future work. More generally, due to the versatility of bootstrap methods, our
approach may also be relevant to measuring the convergence of other randomized
algorithms, as in Lopes, Wang and Mahoney (2017, 2018).
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